IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v78y2020i1d10.1007_s10898-020-00895-y.html
   My bibliography  Save this article

Two modified extragradient algorithms for solving variational inequalities

Author

Listed:
  • Trinh Ngoc Hai

    (Hanoi University of Science and Technology)

Abstract

In this paper, we discuss two modified extragradient methods for variational inequalities. The first one can be applied when the Lipschitz constant of the involving operator is unknown. In contrast to the work by Hieu and Thong (J Glob Optim 70:385–399, 2018) and by Khanh (Numer Funct Anal Optim 37:1131–1143, 2016), the new algorithm does not require its step-sizes tending to zero. This feature helps to speed up our method. The second algorithm solves variational inequalities with non-Lipschitz continuous operators. Under the pseudomonotonicity assumption, the proposed algorithm converges to a solution of the problem. In contrast to other solution methods for this class of problems, the new algorithm does not require the step sizes being square summable. Some numerical experiments show that the new algorithms are more effective than the existing ones.

Suggested Citation

  • Trinh Ngoc Hai, 2020. "Two modified extragradient algorithms for solving variational inequalities," Journal of Global Optimization, Springer, vol. 78(1), pages 91-106, September.
  • Handle: RePEc:spr:jglopt:v:78:y:2020:i:1:d:10.1007_s10898-020-00895-y
    DOI: 10.1007/s10898-020-00895-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00895-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00895-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M.A. Noor, 2003. "Extragradient Methods for Pseudomonotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 117(3), pages 475-488, June.
    2. Dang Hieu & Duong Viet Thong, 2018. "New extragradient-like algorithms for strongly pseudomonotone variational inequalities," Journal of Global Optimization, Springer, vol. 70(2), pages 385-399, February.
    3. P. Anh & T. Hai & P. Tuan, 2016. "On ergodic algorithms for equilibrium problems," Journal of Global Optimization, Springer, vol. 64(1), pages 179-195, January.
    4. J. Bello Cruz & A. Iusem, 2010. "Convergence of direct methods for paramonotone variational inequalities," Computational Optimization and Applications, Springer, vol. 46(2), pages 247-263, June.
    5. Pham Khanh & Phan Vuong, 2014. "Modified projection method for strongly pseudomonotone variational inequalities," Journal of Global Optimization, Springer, vol. 58(2), pages 341-350, February.
    6. Y. J. Wang & N. H. Xiu & J. Z. Zhang, 2003. "Modified Extragradient Method for Variational Inequalities and Verification of Solution Existence," Journal of Optimization Theory and Applications, Springer, vol. 119(1), pages 167-183, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dang Hieu & Pham Ky Anh & Le Dung Muu, 2019. "Modified extragradient-like algorithms with new stepsizes for variational inequalities," Computational Optimization and Applications, Springer, vol. 73(3), pages 913-932, July.
    2. Boţ, R.I. & Csetnek, E.R. & Vuong, P.T., 2020. "The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces," European Journal of Operational Research, Elsevier, vol. 287(1), pages 49-60.
    3. Pham Ky Anh & Trinh Ngoc Hai, 2019. "Novel self-adaptive algorithms for non-Lipschitz equilibrium problems with applications," Journal of Global Optimization, Springer, vol. 73(3), pages 637-657, March.
    4. Duong Viet Thong & Phan Tu Vuong & Pham Ky Anh & Le Dung Muu, 2022. "A New Projection-type Method with Nondecreasing Adaptive Step-sizes for Pseudo-monotone Variational Inequalities," Networks and Spatial Economics, Springer, vol. 22(4), pages 803-829, December.
    5. Dang Van Hieu & Jean Jacques Strodiot & Le Dung Muu, 2020. "An Explicit Extragradient Algorithm for Solving Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 476-503, May.
    6. Jamilu Abubakar & Poom Kumam & Habib ur Rehman & Abdulkarim Hassan Ibrahim, 2020. "Inertial Iterative Schemes with Variable Step Sizes for Variational Inequality Problem Involving Pseudomonotone Operator," Mathematics, MDPI, vol. 8(4), pages 1-25, April.
    7. Pham Ky Anh & Trinh Ngoc Hai, 2021. "Dynamical system for solving bilevel variational inequalities," Journal of Global Optimization, Springer, vol. 80(4), pages 945-963, August.
    8. Yonghong Yao & Mihai Postolache & Jen-Chih Yao, 2019. "Iterative Algorithms for Pseudomonotone Variational Inequalities and Fixed Point Problems of Pseudocontractive Operators," Mathematics, MDPI, vol. 7(12), pages 1-13, December.
    9. P. Anh & H. Le Thi, 2013. "An Armijo-type method for pseudomonotone equilibrium problems and its applications," Journal of Global Optimization, Springer, vol. 57(3), pages 803-820, November.
    10. Yonghong Yao & Naseer Shahzad & Jen-Chih Yao, 2020. "Projected Subgradient Algorithms for Pseudomonotone Equilibrium Problems and Fixed Points of Pseudocontractive Operators," Mathematics, MDPI, vol. 8(4), pages 1-15, March.
    11. Chuanwei Wang & Yiju Wang & Chuanliang Xu, 2007. "A projection method for a system of nonlinear monotone equations with convex constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(1), pages 33-46, August.
    12. Fedor Stonyakin & Alexander Gasnikov & Pavel Dvurechensky & Alexander Titov & Mohammad Alkousa, 2022. "Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 988-1013, September.
    13. Phan Tu Vuong & Xiaozheng He & Duong Viet Thong, 2021. "Global Exponential Stability of a Neural Network for Inverse Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 915-930, September.
    14. Bello Cruz, J.Y. & Iusem, A.N., 2015. "Full convergence of an approximate projection method for nonsmooth variational inequalities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 114(C), pages 2-13.
    15. Le Quang Thuy & Trinh Ngoc Hai, 2017. "A Projected Subgradient Algorithm for Bilevel Equilibrium Problems and Applications," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 411-431, November.
    16. Guo-ji Tang & Nan-jing Huang, 2012. "Korpelevich’s method for variational inequality problems on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 54(3), pages 493-509, November.
    17. Dang Hieu & Duong Viet Thong, 2018. "New extragradient-like algorithms for strongly pseudomonotone variational inequalities," Journal of Global Optimization, Springer, vol. 70(2), pages 385-399, February.
    18. Liya Liu & Xiaolong Qin & Jen-Chih Yao, 2020. "Strong Convergent Theorems Governed by Pseudo-Monotone Mappings," Mathematics, MDPI, vol. 8(8), pages 1-15, July.
    19. Ma, Jun & Nault, Barrie R. & Tu, Yiliu (Paul), 2023. "Customer segmentation, pricing, and lead time decisions: A stochastic-user-equilibrium perspective," International Journal of Production Economics, Elsevier, vol. 264(C).
    20. Alfredo N. Iusem & Alejandro Jofré & Philip Thompson, 2019. "Incremental Constraint Projection Methods for Monotone Stochastic Variational Inequalities," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 236-263, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:78:y:2020:i:1:d:10.1007_s10898-020-00895-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.