IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v194y2022i3d10.1007_s10957-022-02062-7.html
   My bibliography  Save this article

Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle

Author

Listed:
  • Fedor Stonyakin

    (V.I. Vernadsky Crimean Federal University
    Moscow Institute of Physics and Technology)

  • Alexander Gasnikov

    (Moscow Institute of Physics and Technology
    Institute for Information Transmission Problems
    HSE University)

  • Pavel Dvurechensky

    (Weierstrass Institute for Applied Analysis and Stochastics)

  • Alexander Titov

    (Moscow Institute of Physics and Technology
    HSE University)

  • Mohammad Alkousa

    (Moscow Institute of Physics and Technology
    HSE University)

Abstract

We introduce an inexact oracle model for variational inequalities with monotone operators, propose a numerical method that solves such variational inequalities, and analyze its convergence rate. As a particular case, we consider variational inequalities with Hölder-continuous operator and show that our algorithm is universal. This means that, without knowing the Hölder exponent and Hölder constant, the algorithm has the least possible in the worst-case sense complexity for this class of variational inequalities. We also consider the case of variational inequalities with a strongly monotone operator and generalize the algorithm for variational inequalities with inexact oracle and our universal method for this class of problems. Finally, we show how our method can be applied to convex–concave saddle point problems with Hölder-continuous partial subgradients.

Suggested Citation

  • Fedor Stonyakin & Alexander Gasnikov & Pavel Dvurechensky & Alexander Titov & Mohammad Alkousa, 2022. "Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 988-1013, September.
  • Handle: RePEc:spr:joptap:v:194:y:2022:i:3:d:10.1007_s10957-022-02062-7
    DOI: 10.1007/s10957-022-02062-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-022-02062-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-022-02062-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pavel Dvurechensky & Yurii Nesterov & Vladimir Spokoiny, 2015. "Primal-Dual Methods for Solving Infinite-Dimensional Games," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 23-51, July.
    2. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2011. "First-order methods of smooth convex optimization with inexact oracle," LIDAM Discussion Papers CORE 2011002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. NESTEROV, Yurii, 2015. "Universal gradient methods for convex optimization problems," LIDAM Reprints CORE 2701, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Dvurechensky, Pavel & Gorbunov, Eduard & Gasnikov, Alexander, 2021. "An accelerated directional derivative method for smooth stochastic convex optimization," European Journal of Operational Research, Elsevier, vol. 290(2), pages 601-621.
    5. Pham Khanh & Phan Vuong, 2014. "Modified projection method for strongly pseudomonotone variational inequalities," Journal of Global Optimization, Springer, vol. 58(2), pages 341-350, February.
    6. NESTEROV, Yu, 2003. "Dual extrapolation and its applications for solving variational inequalities and related problems," LIDAM Discussion Papers CORE 2003068, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. DVURECHENSKY, Pavel & NESTEROV, Yurii & SPOKOINY, Vladimir, 2015. "Primal-dual methods for solving infinite-dimensional games," LIDAM Reprints CORE 2700, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Cong Dang & Guanghui Lan, 2015. "On the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operators," Computational Optimization and Applications, Springer, vol. 60(2), pages 277-310, March.
    9. NESTEROV, Yurii & SCRIMALI, Laura, 2011. "Solving strongly monotone variational and quasi-variational inequalities," LIDAM Reprints CORE 2357, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Pavel Dvurechensky & Alexander Gasnikov, 2016. "Stochastic Intermediate Gradient Method for Convex Problems with Stochastic Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 121-145, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
    2. Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
    3. Boţ, R.I. & Csetnek, E.R. & Vuong, P.T., 2020. "The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces," European Journal of Operational Research, Elsevier, vol. 287(1), pages 49-60.
    4. Fedor Stonyakin & Ilya Kuruzov & Boris Polyak, 2023. "Stopping Rules for Gradient Methods for Non-convex Problems with Additive Noise in Gradient," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 531-551, August.
    5. Bruce Cox & Anatoli Juditsky & Arkadi Nemirovski, 2017. "Decomposition Techniques for Bilinear Saddle Point Problems and Variational Inequalities with Affine Monotone Operators," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 402-435, February.
    6. Tianxiao Sun & Ion Necoara & Quoc Tran-Dinh, 2020. "Composite convex optimization with global and local inexact oracles," Computational Optimization and Applications, Springer, vol. 76(1), pages 69-124, May.
    7. Masoud Ahookhosh & Arnold Neumaier, 2018. "Solving structured nonsmooth convex optimization with complexity $$\mathcal {O}(\varepsilon ^{-1/2})$$ O ( ε - 1 / 2 )," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 110-145, April.
    8. Dvurechensky, Pavel & Gorbunov, Eduard & Gasnikov, Alexander, 2021. "An accelerated directional derivative method for smooth stochastic convex optimization," European Journal of Operational Research, Elsevier, vol. 290(2), pages 601-621.
    9. Vladimir Krutikov & Svetlana Gutova & Elena Tovbis & Lev Kazakovtsev & Eugene Semenkin, 2022. "Relaxation Subgradient Algorithms with Machine Learning Procedures," Mathematics, MDPI, vol. 10(21), pages 1-33, October.
    10. Jamilu Abubakar & Poom Kumam & Habib ur Rehman & Abdulkarim Hassan Ibrahim, 2020. "Inertial Iterative Schemes with Variable Step Sizes for Variational Inequality Problem Involving Pseudomonotone Operator," Mathematics, MDPI, vol. 8(4), pages 1-25, April.
    11. Duong Viet Thong & Aviv Gibali & Mathias Staudigl & Phan Tu Vuong, 2021. "Computing Dynamic User Equilibrium on Large-Scale Networks Without Knowing Global Parameters," Networks and Spatial Economics, Springer, vol. 21(3), pages 735-768, September.
    12. Elena Tovbis & Vladimir Krutikov & Predrag Stanimirović & Vladimir Meshechkin & Aleksey Popov & Lev Kazakovtsev, 2023. "A Family of Multi-Step Subgradient Minimization Methods," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
    13. Jueyou Li & Zhiyou Wu & Changzhi Wu & Qiang Long & Xiangyu Wang, 2016. "An Inexact Dual Fast Gradient-Projection Method for Separable Convex Optimization with Linear Coupled Constraints," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 153-171, January.
    14. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Xuexue Zhang & Sanyang Liu & Nannan Zhao, 2023. "An Extended Gradient Method for Smooth and Strongly Convex Functions," Mathematics, MDPI, vol. 11(23), pages 1-14, November.
    16. Dang Hieu & Pham Ky Anh & Le Dung Muu, 2019. "Modified extragradient-like algorithms with new stepsizes for variational inequalities," Computational Optimization and Applications, Springer, vol. 73(3), pages 913-932, July.
    17. Julian Rasch & Antonin Chambolle, 2020. "Inexact first-order primal–dual algorithms," Computational Optimization and Applications, Springer, vol. 76(2), pages 381-430, June.
    18. Zhen-Ping Yang & Gui-Hua Lin, 2021. "Variance-Based Single-Call Proximal Extragradient Algorithms for Stochastic Mixed Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 393-427, August.
    19. Xiao-Juan Zhang & Xue-Wu Du & Zhen-Ping Yang & Gui-Hua Lin, 2019. "An Infeasible Stochastic Approximation and Projection Algorithm for Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1053-1076, December.
    20. Trinh Ngoc Hai, 2020. "Two modified extragradient algorithms for solving variational inequalities," Journal of Global Optimization, Springer, vol. 78(1), pages 91-106, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:194:y:2022:i:3:d:10.1007_s10957-022-02062-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.