IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i8p1256-d393023.html
   My bibliography  Save this article

Strong Convergent Theorems Governed by Pseudo-Monotone Mappings

Author

Listed:
  • Liya Liu

    (School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China)

  • Xiaolong Qin

    (Department of Mathematics, Hangzhou Normal University, Hangzhou 311121, China)

  • Jen-Chih Yao

    (Center for General Education, China Medical University, Taichung 40447, Taiwan)

Abstract

The purpose of this paper is to introduce two different kinds of iterative algorithms with inertial effects for solving variational inequalities. The iterative processes are based on the extragradient method, the Mann-type method and the viscosity method. Convergence theorems of strong convergence are established in Hilbert spaces under mild assumption that the associated mapping is Lipschitz continuous, pseudo-monotone and sequentially weakly continuous. Numerical experiments are performed to illustrate the behaviors of our proposed methods, as well as comparing them with the existing one in literature.

Suggested Citation

  • Liya Liu & Xiaolong Qin & Jen-Chih Yao, 2020. "Strong Convergent Theorems Governed by Pseudo-Monotone Mappings," Mathematics, MDPI, vol. 8(8), pages 1-15, July.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1256-:d:393023
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/8/1256/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/8/1256/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bing Tan & Shanshan Xu & Songxiao Li, 2020. "Modified Inertial Hybrid and Shrinking Projection Algorithms for Solving Fixed Point Problems," Mathematics, MDPI, vol. 8(2), pages 1-12, February.
    2. Y. Censor & A. Gibali & S. Reich, 2011. "The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 318-335, February.
    3. Dang Hieu & Duong Viet Thong, 2018. "New extragradient-like algorithms for strongly pseudomonotone variational inequalities," Journal of Global Optimization, Springer, vol. 70(2), pages 385-399, February.
    4. Yinglin Luo & Meijuan Shang & Bing Tan, 2020. "A General Inertial Viscosity Type Method for Nonexpansive Mappings and Its Applications in Signal Processing," Mathematics, MDPI, vol. 8(2), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamilu Abubakar & Poom Kumam & Habib ur Rehman & Abdulkarim Hassan Ibrahim, 2020. "Inertial Iterative Schemes with Variable Step Sizes for Variational Inequality Problem Involving Pseudomonotone Operator," Mathematics, MDPI, vol. 8(4), pages 1-25, April.
    2. Timilehin O. Alakoya & Oluwatosin T. Mewomo & Yekini Shehu, 2022. "Strong convergence results for quasimonotone variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 249-279, April.
    3. Dang Hieu & Pham Ky Anh & Le Dung Muu, 2019. "Modified extragradient-like algorithms with new stepsizes for variational inequalities," Computational Optimization and Applications, Springer, vol. 73(3), pages 913-932, July.
    4. Dang Van Hieu & Jean Jacques Strodiot & Le Dung Muu, 2020. "An Explicit Extragradient Algorithm for Solving Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 476-503, May.
    5. Shin-ya Matsushita & Li Xu, 2014. "On Finite Convergence of Iterative Methods for Variational Inequalities in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 701-715, June.
    6. Yanlai Song & Omar Bazighifan, 2022. "A New Alternative Regularization Method for Solving Generalized Equilibrium Problems," Mathematics, MDPI, vol. 10(8), pages 1-14, April.
    7. Yanlai Song & Omar Bazighifan, 2022. "Modified Inertial Subgradient Extragradient Method with Regularization for Variational Inequality and Null Point Problems," Mathematics, MDPI, vol. 10(14), pages 1-17, July.
    8. Dang Hieu, 2017. "New subgradient extragradient methods for common solutions to equilibrium problems," Computational Optimization and Applications, Springer, vol. 67(3), pages 571-594, July.
    9. Chinedu Izuchukwu & Yekini Shehu, 2021. "New Inertial Projection Methods for Solving Multivalued Variational Inequality Problems Beyond Monotonicity," Networks and Spatial Economics, Springer, vol. 21(2), pages 291-323, June.
    10. Yekini Shehu & Olaniyi S. Iyiola & Duong Viet Thong & Nguyen Thi Cam Van, 2021. "An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 213-242, April.
    11. Liya Liu & Xiaolong Qin & Jen-Chih Yao, 2020. "A Hybrid Forward–Backward Algorithm and Its Optimization Application," Mathematics, MDPI, vol. 8(3), pages 1-16, March.
    12. Trinh Ngoc Hai, 2020. "Two modified extragradient algorithms for solving variational inequalities," Journal of Global Optimization, Springer, vol. 78(1), pages 91-106, September.
    13. P. E. Maingé & M. L. Gobinddass, 2016. "Convergence of One-Step Projected Gradient Methods for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 146-168, October.
    14. Gang Cai & Aviv Gibali & Olaniyi S. Iyiola & Yekini Shehu, 2018. "A New Double-Projection Method for Solving Variational Inequalities in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 219-239, July.
    15. Boţ, R.I. & Csetnek, E.R. & Vuong, P.T., 2020. "The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces," European Journal of Operational Research, Elsevier, vol. 287(1), pages 49-60.
    16. Seifu Endris Yimer & Poom Kumam & Anteneh Getachew Gebrie & Rabian Wangkeeree, 2019. "Inertial Method for Bilevel Variational Inequality Problems with Fixed Point and Minimizer Point Constraints," Mathematics, MDPI, vol. 7(9), pages 1-21, September.
    17. Xin He & Nan-jing Huang & Xue-song Li, 2022. "Modified Projection Methods for Solving Multi-valued Variational Inequality without Monotonicity," Networks and Spatial Economics, Springer, vol. 22(2), pages 361-377, June.
    18. Bing Tan & Zheng Zhou & Songxiao Li, 2020. "Strong Convergence of Modified Inertial Mann Algorithms for Nonexpansive Mappings," Mathematics, MDPI, vol. 8(4), pages 1-11, March.
    19. Lu-Chuan Ceng & Yekini Shehu & Jen-Chih Yao, 2022. "Modified Mann Subgradient-like Extragradient Rules for Variational Inequalities and Common Fixed Points Involving Asymptotically Nonexpansive Mappings," Mathematics, MDPI, vol. 10(5), pages 1-20, February.
    20. Dang Hieu & Pham Ky Anh & Le Dung Muu, 2017. "Modified hybrid projection methods for finding common solutions to variational inequality problems," Computational Optimization and Applications, Springer, vol. 66(1), pages 75-96, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1256-:d:393023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.