IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v287y2020i1p49-60.html
   My bibliography  Save this article

The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces

Author

Listed:
  • Boţ, R.I.
  • Csetnek, E.R.
  • Vuong, P.T.

Abstract

Tseng’s forward–backward–forward algorithm is a valuable alternative for Korpelevich’s extragradient method when solving variational inequalities over a convex and closed set governed by monotone and Lipschitz continuous operators, as it requires in every step only one projection operation. However, it is well-known that Korpelevich’s method converges and can therefore be used also for solving variational inequalities governed by pseudo-monotone and Lipschitz continuous operators. In this paper, we first associate to a pseudo-monotone variational inequality a forward–backward–forward dynamical system and carry out an asymptotic analysis for the generated trajectories. The explicit time discretization of this system results into Tseng’s forward–backward–forward algorithm with relaxation parameters, which we prove to converge also when it is applied to pseudo-monotone variational inequalities. In addition, we show that linear convergence is guaranteed under strong pseudo-monotonicity. Numerical experiments are carried out for pseudo-monotone variational inequalities over polyhedral sets and fractional programming problems.

Suggested Citation

  • Boţ, R.I. & Csetnek, E.R. & Vuong, P.T., 2020. "The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces," European Journal of Operational Research, Elsevier, vol. 287(1), pages 49-60.
  • Handle: RePEc:eee:ejores:v:287:y:2020:i:1:p:49-60
    DOI: 10.1016/j.ejor.2020.04.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172030388X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.04.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Censor & A. Gibali & S. Reich, 2011. "The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 318-335, February.
    2. B. Abbas & H. Attouch & Benar F. Svaiter, 2014. "Newton-Like Dynamics and Forward-Backward Methods for Structured Monotone Inclusions in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 331-360, May.
    3. L. C. Ceng & M. Teboulle & J. C. Yao, 2010. "Weak Convergence of an Iterative Method for Pseudomonotone Variational Inequalities and Fixed-Point Problems," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 19-31, July.
    4. N. Hadjisavvas & S. Schaible & N.-C. Wong, 2012. "Pseudomonotone Operators: A Survey of the Theory and Its Applications," Journal of Optimization Theory and Applications, Springer, vol. 152(1), pages 1-20, January.
    5. Cong Dang & Guanghui Lan, 2015. "On the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operators," Computational Optimization and Applications, Springer, vol. 60(2), pages 277-310, March.
    6. J. Bello Cruz & A. Iusem, 2010. "Convergence of direct methods for paramonotone variational inequalities," Computational Optimization and Applications, Springer, vol. 46(2), pages 247-263, June.
    7. Pham Khanh & Phan Vuong, 2014. "Modified projection method for strongly pseudomonotone variational inequalities," Journal of Global Optimization, Springer, vol. 58(2), pages 341-350, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinsheng Yang & Gang Yuan & Jiaxiang Cai & Silin Wei, 2021. "Forecasting of Disassembly Waste Generation under Uncertainties Using Digital Twinning-Based Hidden Markov Model," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    2. Yekini Shehu & Lulu Liu & Qiao-Li Dong & Jen-Chih Yao, 2022. "A Relaxed Forward-Backward-Forward Algorithm with Alternated Inertial Step: Weak and Linear Convergence," Networks and Spatial Economics, Springer, vol. 22(4), pages 959-990, December.
    3. Ferdinard U. Ogbuisi & Yekini Shehu & Jen-Chih Yao, 2023. "Relaxed Single Projection Methods for Solving Bilevel Variational Inequality Problems in Hilbert Spaces," Networks and Spatial Economics, Springer, vol. 23(3), pages 641-678, September.
    4. Duong Viet Thong & Phan Tu Vuong & Pham Ky Anh & Le Dung Muu, 2022. "A New Projection-type Method with Nondecreasing Adaptive Step-sizes for Pseudo-monotone Variational Inequalities," Networks and Spatial Economics, Springer, vol. 22(4), pages 803-829, December.
    5. Phan Tu Vuong & Jean Jacques Strodiot, 2020. "A Dynamical System for Strongly Pseudo-monotone Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 767-784, June.
    6. Lateef Olakunle Jolaoso & Christian Chibueze Okeke & Yekini Shehu, 2021. "Extragradient Algorithm for Solving Pseudomonotone Equilibrium Problem with Bregman Distance in Reflexive Banach Spaces," Networks and Spatial Economics, Springer, vol. 21(4), pages 873-903, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dang Van Hieu & Jean Jacques Strodiot & Le Dung Muu, 2020. "An Explicit Extragradient Algorithm for Solving Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 476-503, May.
    2. Dang Hieu & Pham Ky Anh & Le Dung Muu, 2019. "Modified extragradient-like algorithms with new stepsizes for variational inequalities," Computational Optimization and Applications, Springer, vol. 73(3), pages 913-932, July.
    3. Trinh Ngoc Hai, 2020. "Two modified extragradient algorithms for solving variational inequalities," Journal of Global Optimization, Springer, vol. 78(1), pages 91-106, September.
    4. Fedor Stonyakin & Alexander Gasnikov & Pavel Dvurechensky & Alexander Titov & Mohammad Alkousa, 2022. "Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 988-1013, September.
    5. Dang Hieu & Duong Viet Thong, 2018. "New extragradient-like algorithms for strongly pseudomonotone variational inequalities," Journal of Global Optimization, Springer, vol. 70(2), pages 385-399, February.
    6. Lateef Olakunle Jolaoso & Adeolu Taiwo & Timilehin Opeyemi Alakoya & Oluwatosin Temitope Mewomo, 2020. "A Strong Convergence Theorem for Solving Pseudo-monotone Variational Inequalities Using Projection Methods," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 744-766, June.
    7. Lu-Chuan Ceng & Xiaolong Qin & Yekini Shehu & Jen-Chih Yao, 2019. "Mildly Inertial Subgradient Extragradient Method for Variational Inequalities Involving an Asymptotically Nonexpansive and Finitely Many Nonexpansive Mappings," Mathematics, MDPI, vol. 7(10), pages 1-19, September.
    8. Duong Viet Thong & Xiao-Huan Li & Vu Tien Dung & Pham Thi Huong Huyen & Hoang Thi Thanh Tam, 2024. "Using Double Inertial Steps Into the Single Projection Method with Non-monotonic Step Sizes for Solving Pseudomontone Variational Inequalities," Networks and Spatial Economics, Springer, vol. 24(1), pages 1-26, March.
    9. Jamilu Abubakar & Poom Kumam & Habib ur Rehman & Abdulkarim Hassan Ibrahim, 2020. "Inertial Iterative Schemes with Variable Step Sizes for Variational Inequality Problem Involving Pseudomonotone Operator," Mathematics, MDPI, vol. 8(4), pages 1-25, April.
    10. Pham Ky Anh & Trinh Ngoc Hai, 2021. "Dynamical system for solving bilevel variational inequalities," Journal of Global Optimization, Springer, vol. 80(4), pages 945-963, August.
    11. J. Y. Bello Cruz & R. Díaz Millán, 2016. "A relaxed-projection splitting algorithm for variational inequalities in Hilbert spaces," Journal of Global Optimization, Springer, vol. 65(3), pages 597-614, July.
    12. Yonghong Yao & Ke Wang & Xiaowei Qin & Li-Jun Zhu, 2019. "Extension of Extragradient Techniques for Variational Inequalities," Mathematics, MDPI, vol. 7(2), pages 1-11, January.
    13. Dang Hieu, 2017. "New subgradient extragradient methods for common solutions to equilibrium problems," Computational Optimization and Applications, Springer, vol. 67(3), pages 571-594, July.
    14. Chinedu Izuchukwu & Yekini Shehu, 2021. "New Inertial Projection Methods for Solving Multivalued Variational Inequality Problems Beyond Monotonicity," Networks and Spatial Economics, Springer, vol. 21(2), pages 291-323, June.
    15. Timilehin O. Alakoya & Oluwatosin T. Mewomo & Yekini Shehu, 2022. "Strong convergence results for quasimonotone variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 249-279, April.
    16. Yonghong Yao & Mihai Postolache & Jen-Chih Yao, 2019. "Iterative Algorithms for Pseudomonotone Variational Inequalities and Fixed Point Problems of Pseudocontractive Operators," Mathematics, MDPI, vol. 7(12), pages 1-13, December.
    17. Yekini Shehu & Olaniyi S. Iyiola & Duong Viet Thong & Nguyen Thi Cam Van, 2021. "An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 213-242, April.
    18. Xiao-Juan Zhang & Xue-Wu Du & Zhen-Ping Yang & Gui-Hua Lin, 2019. "An Infeasible Stochastic Approximation and Projection Algorithm for Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1053-1076, December.
    19. P. E. Maingé & M. L. Gobinddass, 2016. "Convergence of One-Step Projected Gradient Methods for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 146-168, October.
    20. Seifu Endris Yimer & Poom Kumam & Anteneh Getachew Gebrie & Rabian Wangkeeree, 2019. "Inertial Method for Bilevel Variational Inequality Problems with Fixed Point and Minimizer Point Constraints," Mathematics, MDPI, vol. 7(9), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:287:y:2020:i:1:p:49-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.