IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v190y2021i3d10.1007_s10957-021-01915-x.html
   My bibliography  Save this article

Global Exponential Stability of a Neural Network for Inverse Variational Inequalities

Author

Listed:
  • Phan Tu Vuong

    (University of Southampton)

  • Xiaozheng He

    (Rensselaer Polytechnic Institute)

  • Duong Viet Thong

    (National Economics University)

Abstract

We investigate the convergence properties of a projected neural network for solving inverse variational inequalities. Under standard assumptions, we establish the exponential stability of the proposed neural network. A discrete version of the proposed neural network is considered, leading to a new projection method for solving inverse variational inequalities, for which we obtain the linear convergence. We illustrate the effectiveness of the proposed neural network and its explicit discretization by considering applications in the road pricing problem arising in transportation science. The results obtained in this paper provide a positive answer to a recent open question and improve several recent results in the literature.

Suggested Citation

  • Phan Tu Vuong & Xiaozheng He & Duong Viet Thong, 2021. "Global Exponential Stability of a Neural Network for Inverse Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 915-930, September.
  • Handle: RePEc:spr:joptap:v:190:y:2021:i:3:d:10.1007_s10957-021-01915-x
    DOI: 10.1007/s10957-021-01915-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-021-01915-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-021-01915-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Xiaozheng & Liu, Henry X., 2011. "Inverse variational inequalities with projection-based solution methods," European Journal of Operational Research, Elsevier, vol. 208(1), pages 12-18, January.
    2. Jiang, Yaning & Cai, Xingju & Han, Deren, 2020. "Solving policy design problems: Alternating direction method of multipliers-based methods for structured inverse variational inequalities," European Journal of Operational Research, Elsevier, vol. 280(2), pages 417-427.
    3. M. Pappalardo & M. Passacantando, 2002. "Stability for Equilibrium Problems: From Variational Inequalities to Dynamical Systems," Journal of Optimization Theory and Applications, Springer, vol. 113(3), pages 567-582, June.
    4. Pham Khanh & Phan Vuong, 2014. "Modified projection method for strongly pseudomonotone variational inequalities," Journal of Global Optimization, Springer, vol. 58(2), pages 341-350, February.
    5. He, Bingsheng & He, Xiao-Zheng & Liu, Henry X., 2010. "Solving a class of constrained 'black-box' inverse variational inequalities," European Journal of Operational Research, Elsevier, vol. 204(3), pages 391-401, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pham Ky Anh & Trinh Ngoc Hai, 2021. "Dynamical system for solving bilevel variational inequalities," Journal of Global Optimization, Springer, vol. 80(4), pages 945-963, August.
    2. Phan Tu Vuong, 2022. "The Global Exponential Stability of a Dynamical System for Solving Variational Inequalities," Networks and Spatial Economics, Springer, vol. 22(2), pages 395-407, June.
    3. Phan Tu Vuong & Jean Jacques Strodiot, 2020. "A Dynamical System for Strongly Pseudo-monotone Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 767-784, June.
    4. Dang Hieu & Pham Ky Anh & Le Dung Muu, 2019. "Modified extragradient-like algorithms with new stepsizes for variational inequalities," Computational Optimization and Applications, Springer, vol. 73(3), pages 913-932, July.
    5. Trinh Ngoc Hai, 2020. "Two modified extragradient algorithms for solving variational inequalities," Journal of Global Optimization, Springer, vol. 78(1), pages 91-106, September.
    6. Boţ, R.I. & Csetnek, E.R. & Vuong, P.T., 2020. "The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces," European Journal of Operational Research, Elsevier, vol. 287(1), pages 49-60.
    7. Fedor Stonyakin & Alexander Gasnikov & Pavel Dvurechensky & Alexander Titov & Mohammad Alkousa, 2022. "Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 988-1013, September.
    8. Dang Hieu & Duong Viet Thong, 2018. "New extragradient-like algorithms for strongly pseudomonotone variational inequalities," Journal of Global Optimization, Springer, vol. 70(2), pages 385-399, February.
    9. Ma, Jun & Nault, Barrie R. & Tu, Yiliu (Paul), 2023. "Customer segmentation, pricing, and lead time decisions: A stochastic-user-equilibrium perspective," International Journal of Production Economics, Elsevier, vol. 264(C).
    10. Duong Viet Thong & Phan Tu Vuong & Pham Ky Anh & Le Dung Muu, 2022. "A New Projection-type Method with Nondecreasing Adaptive Step-sizes for Pseudo-monotone Variational Inequalities," Networks and Spatial Economics, Springer, vol. 22(4), pages 803-829, December.
    11. Dang Van Hieu & Jean Jacques Strodiot & Le Dung Muu, 2020. "An Explicit Extragradient Algorithm for Solving Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 476-503, May.
    12. Nie, Yu (Marco), 2010. "Equilibrium analysis of macroscopic traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 62-72, January.
    13. Phan Tu Vuong & Jean Jacques Strodiot, 2018. "The Glowinski–Le Tallec splitting method revisited in the framework of equilibrium problems in Hilbert spaces," Journal of Global Optimization, Springer, vol. 70(2), pages 477-495, February.
    14. Duong Viet Thong & Xiao-Huan Li & Vu Tien Dung & Pham Thi Huong Huyen & Hoang Thi Thanh Tam, 2024. "Using Double Inertial Steps Into the Single Projection Method with Non-monotonic Step Sizes for Solving Pseudomontone Variational Inequalities," Networks and Spatial Economics, Springer, vol. 24(1), pages 1-26, March.
    15. Jamilu Abubakar & Poom Kumam & Habib ur Rehman & Abdulkarim Hassan Ibrahim, 2020. "Inertial Iterative Schemes with Variable Step Sizes for Variational Inequality Problem Involving Pseudomonotone Operator," Mathematics, MDPI, vol. 8(4), pages 1-25, April.
    16. Massimo Pappalardo & Giandomenico Mastroeni & Mauro Passacantando, 2016. "Merit functions: a bridge between optimization and equilibria," Annals of Operations Research, Springer, vol. 240(1), pages 271-299, May.
    17. Y. S. Xia, 2004. "Further Results on Global Convergence and Stability of Globally Projected Dynamical Systems," Journal of Optimization Theory and Applications, Springer, vol. 122(3), pages 627-649, September.
    18. Jiawei Chen & Elisabeth Köbis & Markus Köbis & Jen-Chih Yao, 2018. "Image Space Analysis for Constrained Inverse Vector Variational Inequalities via Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 816-834, June.
    19. Elisabeth Köbis & Markus A. Köbis & Xiaolong Qin, 2019. "Nonlinear Separation Approach to Inverse Variational Inequalities in Real Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 105-121, October.
    20. He, Xiaozheng & Liu, Henry X., 2011. "Inverse variational inequalities with projection-based solution methods," European Journal of Operational Research, Elsevier, vol. 208(1), pages 12-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:190:y:2021:i:3:d:10.1007_s10957-021-01915-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.