IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v119y2003i1d10.1023_bjota.0000005047.30026.b8.html
   My bibliography  Save this article

Modified Extragradient Method for Variational Inequalities and Verification of Solution Existence

Author

Listed:
  • Y. J. Wang

    (Nanjing Normal University
    Qufu Normal University)

  • N. H. Xiu

    (Northern Jiaotong University)

  • J. Z. Zhang

    (City University of Hong Kong)

Abstract

In this paper, we propose a modified extragradient method for solving variational inequalities (VI) which has the following nice features: (i) The generated sequence possesses an expansion property with respect to the starting point; (ii) the existence of the solution to a VI problem can be verified through the behavior of the generated sequence from the fact that the iterative sequence diverges to infinity if and only if the solution set is empty. Global convergence of the method is guaranteed under mild conditions. Our preliminary computational experience is also reported.

Suggested Citation

  • Y. J. Wang & N. H. Xiu & J. Z. Zhang, 2003. "Modified Extragradient Method for Variational Inequalities and Verification of Solution Existence," Journal of Optimization Theory and Applications, Springer, vol. 119(1), pages 167-183, October.
  • Handle: RePEc:spr:joptap:v:119:y:2003:i:1:d:10.1023_b:jota.0000005047.30026.b8
    DOI: 10.1023/B:JOTA.0000005047.30026.b8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/B:JOTA.0000005047.30026.b8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/B:JOTA.0000005047.30026.b8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I. V. Konnov, 1997. "A Class of Combined Iterative Methods for Solving Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 94(3), pages 677-693, September.
    2. M. Seetharama Gowda & Jong-Shi Pang, 1992. "On Solution Stability of the Linear Complementarity Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 77-83, February.
    3. Y. J. Wang & N. H. Xiu & C. Y. Wang, 2001. "Unified Framework of Extragradient-Type Methods for Pseudomonotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 111(3), pages 641-656, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E. M. Bednarczuk & A. Jezierska & K. E. Rutkowski, 2018. "Proximal primal–dual best approximation algorithm with memory," Computational Optimization and Applications, Springer, vol. 71(3), pages 767-794, December.
    2. Trinh Ngoc Hai, 2020. "Two modified extragradient algorithms for solving variational inequalities," Journal of Global Optimization, Springer, vol. 78(1), pages 91-106, September.
    3. X. Wang & S. Li & X. Kou & Q. Zhang, 2015. "A new alternating direction method for linearly constrained nonconvex optimization problems," Journal of Global Optimization, Springer, vol. 62(4), pages 695-709, August.
    4. Guo-ji Tang & Nan-jing Huang, 2012. "Korpelevich’s method for variational inequality problems on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 54(3), pages 493-509, November.
    5. P. Anh & H. Le Thi, 2013. "An Armijo-type method for pseudomonotone equilibrium problems and its applications," Journal of Global Optimization, Springer, vol. 57(3), pages 803-820, November.
    6. Chuanwei Wang & Yiju Wang & Chuanliang Xu, 2007. "A projection method for a system of nonlinear monotone equations with convex constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(1), pages 33-46, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karan N. Chadha & Ankur A. Kulkarni, 2022. "On independent cliques and linear complementarity problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(4), pages 1036-1057, December.
    2. Hoang Ngoc Tuan, 2015. "Boundedness of a Type of Iterative Sequences in Two-Dimensional Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 234-245, January.
    3. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    4. Zhang, Yongxiong & Zheng, Hua & Lu, Xiaoping & Vong, Seakweng, 2023. "Modulus-based synchronous multisplitting iteration methods without auxiliary variable for solving vertical linear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    5. Guo-qiang Wang & Yu-jing Yue & Xin-zhong Cai, 2009. "Weighted-path-following interior-point algorithm to monotone mixed linear complementarity problem," Fuzzy Information and Engineering, Springer, vol. 1(4), pages 435-445, December.
    6. van der Laan, Gerard & Talman, Dolf & Yang, Zaifu, 2011. "Solving discrete systems of nonlinear equations," European Journal of Operational Research, Elsevier, vol. 214(3), pages 493-500, November.
    7. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    8. Christoph Böhringer & Thomas F. Rutherford, 2017. "Paris after Trump: An Inconvenient Insight," CESifo Working Paper Series 6531, CESifo.
    9. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    10. A. K. Das, 2016. "Properties of some matrix classes based on principal pivot transform," Annals of Operations Research, Springer, vol. 243(1), pages 375-382, August.
    11. Meijuan Shang & Chao Zhang & Naihua Xiu, 2014. "Minimal Zero Norm Solutions of Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 795-814, December.
    12. Massol, Olivier & Rifaat, Omer, 2018. "Phasing out the U.S. Federal Helium Reserve: Policy insights from a world helium model," Resource and Energy Economics, Elsevier, vol. 54(C), pages 186-211.
    13. S. R. Mohan, 1997. "Degeneracy Subgraph of the Lemke Complementary Pivot Algorithm and Anticycling Rule," Journal of Optimization Theory and Applications, Springer, vol. 94(2), pages 409-423, August.
    14. Thiruvankatachari Parthasarathy & Gomatam Ravindran & Sunil Kumar, 2022. "On Semimonotone Matrices, $$R_0$$ R 0 -Matrices and Q-Matrices," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 131-147, October.
    15. Y. P. Fang & N. J. Huang, 2006. "Feasibility and Solvability for Vector Complementarity Problems1," Journal of Optimization Theory and Applications, Springer, vol. 129(3), pages 373-390, June.
    16. Xiaojun Chen & Yun Shi & Xiaozhou Wang, 2020. "Equilibrium Oil Market Share under the COVID-19 Pandemic," Papers 2007.15265, arXiv.org.
    17. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2005. "Computing Integral Solutions of Complementarity Problems," Other publications TiSEM b8e0c74e-2219-4ab0-99a2-0, Tilburg University, School of Economics and Management.
    18. Niu, Yi-Shuai & Júdice, Joaquim & Le Thi, Hoai An & Pham, Dinh Tao, 2019. "Improved dc programming approaches for solving the quadratic eigenvalue complementarity problem," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 95-113.
    19. Y. B. Zhao & J. Y. Han, 1999. "Two Interior-Point Methods for Nonlinear P *(τ)-Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 102(3), pages 659-679, September.
    20. Giandomenico Mastroeni & Letizia Pellegrini & Alberto Peretti, 2021. "Some numerical aspects on a method for solving linear problems with complementarity constraints," Working Papers 16/2021, University of Verona, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:119:y:2003:i:1:d:10.1023_b:jota.0000005047.30026.b8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.