IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v73y2019i3d10.1007_s10898-018-0722-2.html
   My bibliography  Save this article

Novel self-adaptive algorithms for non-Lipschitz equilibrium problems with applications

Author

Listed:
  • Pham Ky Anh

    (Vietnam National University)

  • Trinh Ngoc Hai

    (Hanoi University of Science and Technology)

Abstract

In this paper, we introduce two self-adaptive algorithms for solving a class of non-Lipschitz equilibrium problems. These algorithms are very simple in the sense that at each step, they require only one projection onto a feasible set. Their convergence can be established under quite mild assumptions. More precisely, the weak (strong) convergence of the first algorithm is proved under the pseudo-paramonotonicity (strong pseudomonotonicity) conditions, respectively. Especially, the convexity in the second argument of the involving bifunction is not required. In the second algorithm, the weak convergence is established under the pseudomonotonicity. Moreover, it is proved that under some additional conditions, the solvability of the equilibrium problem is equivalent to the boundedness of the sequences generated by the proposed algorithms. Some applications to the optimization problems and variational inequality problems as well as to transport equilibrium problems are also considered.

Suggested Citation

  • Pham Ky Anh & Trinh Ngoc Hai, 2019. "Novel self-adaptive algorithms for non-Lipschitz equilibrium problems with applications," Journal of Global Optimization, Springer, vol. 73(3), pages 637-657, March.
  • Handle: RePEc:spr:jglopt:v:73:y:2019:i:3:d:10.1007_s10898-018-0722-2
    DOI: 10.1007/s10898-018-0722-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-018-0722-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-018-0722-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Le Quang Thuy & Trinh Ngoc Hai, 2017. "A Projected Subgradient Algorithm for Bilevel Equilibrium Problems and Applications," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 411-431, November.
    2. P. Anh & T. Hai & P. Tuan, 2016. "On ergodic algorithms for equilibrium problems," Journal of Global Optimization, Springer, vol. 64(1), pages 179-195, January.
    3. J. Bello Cruz & A. Iusem, 2010. "Convergence of direct methods for paramonotone variational inequalities," Computational Optimization and Applications, Springer, vol. 46(2), pages 247-263, June.
    4. Phan Vuong & Jean Strodiot & Van Nguyen, 2014. "Projected viscosity subgradient methods for variational inequalities with equilibrium problem constraints in Hilbert spaces," Journal of Global Optimization, Springer, vol. 59(1), pages 173-190, May.
    5. L. D. Muu & T. D. Quoc, 2009. "Regularization Algorithms for Solving Monotone Ky Fan Inequalities with Application to a Nash-Cournot Equilibrium Model," Journal of Optimization Theory and Applications, Springer, vol. 142(1), pages 185-204, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Quang Thuy & Trinh Ngoc Hai, 2017. "A Projected Subgradient Algorithm for Bilevel Equilibrium Problems and Applications," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 411-431, November.
    2. Trinh Ngoc Hai, 2020. "Two modified extragradient algorithms for solving variational inequalities," Journal of Global Optimization, Springer, vol. 78(1), pages 91-106, September.
    3. Jean Strodiot & Phan Vuong & Thi Nguyen, 2016. "A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces," Journal of Global Optimization, Springer, vol. 64(1), pages 159-178, January.
    4. Pham Ky Anh & Trinh Ngoc Hai, 2021. "Dynamical system for solving bilevel variational inequalities," Journal of Global Optimization, Springer, vol. 80(4), pages 945-963, August.
    5. Yonghong Yao & Mihai Postolache & Jen-Chih Yao, 2019. "Iterative Algorithms for Pseudomonotone Variational Inequalities and Fixed Point Problems of Pseudocontractive Operators," Mathematics, MDPI, vol. 7(12), pages 1-13, December.
    6. Boţ, R.I. & Csetnek, E.R. & Vuong, P.T., 2020. "The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces," European Journal of Operational Research, Elsevier, vol. 287(1), pages 49-60.
    7. Yonghong Yao & Naseer Shahzad & Jen-Chih Yao, 2020. "Projected Subgradient Algorithms for Pseudomonotone Equilibrium Problems and Fixed Points of Pseudocontractive Operators," Mathematics, MDPI, vol. 8(4), pages 1-15, March.
    8. Bello Cruz, J.Y. & Iusem, A.N., 2015. "Full convergence of an approximate projection method for nonsmooth variational inequalities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 114(C), pages 2-13.
    9. Alfredo N. Iusem & Alejandro Jofré & Philip Thompson, 2019. "Incremental Constraint Projection Methods for Monotone Stochastic Variational Inequalities," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 236-263, February.
    10. Stefano Lucidi & Mauro Passacantando & Francesco Rinaldi, 2022. "Solving non-monotone equilibrium problems via a DIRECT-type approach," Journal of Global Optimization, Springer, vol. 83(4), pages 699-725, August.
    11. Dang Hieu, 2018. "An inertial-like proximal algorithm for equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(3), pages 399-415, December.
    12. Lateef Olakunle Jolaoso & Christian Chibueze Okeke & Yekini Shehu, 2021. "Extragradient Algorithm for Solving Pseudomonotone Equilibrium Problem with Bregman Distance in Reflexive Banach Spaces," Networks and Spatial Economics, Springer, vol. 21(4), pages 873-903, December.
    13. Tran Quoc & Le Muu, 2012. "Iterative methods for solving monotone equilibrium problems via dual gap functions," Computational Optimization and Applications, Springer, vol. 51(2), pages 709-728, March.
    14. Phan Tu Vuong & Jean Jacques Strodiot, 2018. "The Glowinski–Le Tallec splitting method revisited in the framework of equilibrium problems in Hilbert spaces," Journal of Global Optimization, Springer, vol. 70(2), pages 477-495, February.
    15. J. Y. Bello Cruz & L. R. Lucambio Pérez, 2014. "A Subgradient-Like Algorithm for Solving Vector Convex Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 392-404, August.
    16. Pham Ngoc Anh & Qamrul Hasan Ansari & Ho Phi Tu, 2023. "DC auxiliary principle methods for solving lexicographic equilibrium problems," Journal of Global Optimization, Springer, vol. 85(1), pages 129-153, January.
    17. Pasakorn Yordsorn & Poom Kumam & Habib ur Rehman & Abdulkarim Hassan Ibrahim, 2020. "A Weak Convergence Self-Adaptive Method for Solving Pseudomonotone Equilibrium Problems in a Real Hilbert Space," Mathematics, MDPI, vol. 8(7), pages 1-24, July.
    18. J. Y. Bello Cruz & R. Díaz Millán, 2014. "A Direct Splitting Method for Nonsmooth Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 728-737, June.
    19. Mostafa Nasri & Luiz Carlos Matioli & Euda Mara Silva Ferreira & Adilson Silveira, 2016. "Implementation of Augmented Lagrangian Methods for Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 971-991, March.
    20. Yekini Shehu & Lulu Liu & Xiaolong Qin & Qiao-Li Dong, 2022. "Reflected Iterative Method for Non-Monotone Equilibrium Problems with Applications to Nash-Cournot Equilibrium Models," Networks and Spatial Economics, Springer, vol. 22(1), pages 153-180, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:73:y:2019:i:3:d:10.1007_s10898-018-0722-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.