IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p461-d336956.html
   My bibliography  Save this article

Projected Subgradient Algorithms for Pseudomonotone Equilibrium Problems and Fixed Points of Pseudocontractive Operators

Author

Listed:
  • Yonghong Yao

    (School of Mathematical Sciences, Tiangong University, Tianjin 300387, China
    The Key Laboratory of Intelligent Information and Big Data Processing of NingXia Province, North Minzu University, Yinchuan 750021, China)

  • Naseer Shahzad

    (Department of Mathematics, King Abdulaziz University, P. O. B. 80203, Jeddah 21589, Saudi Arabia)

  • Jen-Chih Yao

    (Center for General Education, China Medical University, Taichung 40402, Taiwan)

Abstract

The projected subgradient algorithms can be considered as an improvement of the projected algorithms and the subgradient algorithms for the equilibrium problems of the class of monotone and Lipschitz continuous operators. In this paper, we present and analyze an iterative algorithm for finding a common element of the fixed point of pseudocontractive operators and the pseudomonotone equilibrium problem in Hilbert spaces. The suggested iterative algorithm is based on the projected method and subgradient method with a linearsearch technique. We show the strong convergence result for the iterative sequence generated by this algorithm. Some applications are also included. Our result improves and extends some existing results in the literature.

Suggested Citation

  • Yonghong Yao & Naseer Shahzad & Jen-Chih Yao, 2020. "Projected Subgradient Algorithms for Pseudomonotone Equilibrium Problems and Fixed Points of Pseudocontractive Operators," Mathematics, MDPI, vol. 8(4), pages 1-15, March.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:461-:d:336956
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/461/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/461/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thi Thu Van Nguyen & Jean Jacques Strodiot & Van Hien Nguyen, 2014. "Hybrid Methods for Solving Simultaneously an Equilibrium Problem and Countably Many Fixed Point Problems in a Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 809-831, March.
    2. Dang Hieu & Pham Ky Anh & Le Dung Muu, 2019. "Modified extragradient-like algorithms with new stepsizes for variational inequalities," Computational Optimization and Applications, Springer, vol. 73(3), pages 913-932, July.
    3. A. Tada & W. Takahashi, 2007. "Weak and Strong Convergence Theorems for a Nonexpansive Mapping and an Equilibrium Problem," Journal of Optimization Theory and Applications, Springer, vol. 133(3), pages 359-370, June.
    4. Jun Yang & Hongwei Liu, 2018. "A Modified Projected Gradient Method for Monotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 197-211, October.
    5. Phan Tu Vuong & Jean Jacques Strodiot & Van Hien Nguyen, 2012. "Extragradient Methods and Linesearch Algorithms for Solving Ky Fan Inequalities and Fixed Point Problems," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 605-627, November.
    6. J. Bello Cruz & A. Iusem, 2010. "Convergence of direct methods for paramonotone variational inequalities," Computational Optimization and Applications, Springer, vol. 46(2), pages 247-263, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yonghong Yao & Mihai Postolache & Jen-Chih Yao, 2019. "Iterative Algorithms for Pseudomonotone Variational Inequalities and Fixed Point Problems of Pseudocontractive Operators," Mathematics, MDPI, vol. 7(12), pages 1-13, December.
    2. Dang Hieu, 2017. "New subgradient extragradient methods for common solutions to equilibrium problems," Computational Optimization and Applications, Springer, vol. 67(3), pages 571-594, July.
    3. Jun Yang & Hongwei Liu, 2020. "A self-adaptive method for pseudomonotone equilibrium problems and variational inequalities," Computational Optimization and Applications, Springer, vol. 75(2), pages 423-440, March.
    4. Yekini Shehu & Olaniyi S. Iyiola & Duong Viet Thong & Nguyen Thi Cam Van, 2021. "An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 213-242, April.
    5. Trinh Ngoc Hai, 2020. "Two modified extragradient algorithms for solving variational inequalities," Journal of Global Optimization, Springer, vol. 78(1), pages 91-106, September.
    6. Boţ, R.I. & Csetnek, E.R. & Vuong, P.T., 2020. "The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces," European Journal of Operational Research, Elsevier, vol. 287(1), pages 49-60.
    7. Uthai Kamraksa & Rabian Wangkeeree, 2012. "Existence theorems and iterative approximation methods for generalized mixed equilibrium problems for a countable family of nonexpansive mappings," Journal of Global Optimization, Springer, vol. 54(1), pages 27-46, September.
    8. Ayed E. Hashoosh & Mohsen Alimohammady & M. K. Kalleji, 2016. "Existence Results for Some Equilibrium Problems Involving -Monotone Bifunction," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2016, pages 1-5, February.
    9. Thi Thu Van Nguyen & Jean Jacques Strodiot & Van Hien Nguyen, 2014. "Hybrid Methods for Solving Simultaneously an Equilibrium Problem and Countably Many Fixed Point Problems in a Hilbert Space," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 809-831, March.
    10. Bello Cruz, J.Y. & Iusem, A.N., 2015. "Full convergence of an approximate projection method for nonsmooth variational inequalities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 114(C), pages 2-13.
    11. Pham Ky Anh & Trinh Ngoc Hai, 2019. "Novel self-adaptive algorithms for non-Lipschitz equilibrium problems with applications," Journal of Global Optimization, Springer, vol. 73(3), pages 637-657, March.
    12. Alfredo N. Iusem & Alejandro Jofré & Philip Thompson, 2019. "Incremental Constraint Projection Methods for Monotone Stochastic Variational Inequalities," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 236-263, February.
    13. P. N. Anh, 2012. "Strong Convergence Theorems for Nonexpansive Mappings and Ky Fan Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 303-320, July.
    14. Jean Strodiot & Phan Vuong & Thi Nguyen, 2016. "A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces," Journal of Global Optimization, Springer, vol. 64(1), pages 159-178, January.
    15. Yekini Shehu & Qiao-Li Dong & Lulu Liu & Jen-Chih Yao, 2023. "Alternated inertial subgradient extragradient method for equilibrium problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 1-30, April.
    16. Duong Viet Thong & Phan Tu Vuong & Pham Ky Anh & Le Dung Muu, 2022. "A New Projection-type Method with Nondecreasing Adaptive Step-sizes for Pseudo-monotone Variational Inequalities," Networks and Spatial Economics, Springer, vol. 22(4), pages 803-829, December.
    17. Javad Balooee & Shih-sen Chang & Jen-Chih Yao, 2023. "Generalized Set-valued Nonlinear Variational-like Inequalities and Fixed Point Problems: Existence and Approximation Solvability Results," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 891-938, June.
    18. Hideaki Iiduka, 2021. "Inexact stochastic subgradient projection method for stochastic equilibrium problems with nonmonotone bifunctions: application to expected risk minimization in machine learning," Journal of Global Optimization, Springer, vol. 80(2), pages 479-505, June.
    19. J. W. Peng, 2010. "Iterative Algorithms for Mixed Equilibrium Problems, Strict Pseudocontractions and Monotone Mappings," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 107-119, January.
    20. Dang Hieu, 2018. "An inertial-like proximal algorithm for equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(3), pages 399-415, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:461-:d:336956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.