IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v71y2018i2d10.1007_s10898-017-0603-0.html
   My bibliography  Save this article

Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property

Author

Listed:
  • M. V. Dolgopolik

    (Saint Petersburg State University
    Russian Academy of Sciences)

Abstract

In this article we present a general theory of augmented Lagrangian functions for cone constrained optimization problems that allows one to study almost all known augmented Lagrangians for these problems within a unified framework. We develop a new general method for proving the existence of global saddle points of augmented Lagrangian functions, called the localization principle. The localization principle unifies, generalizes and sharpens most of the known results on the existence of global saddle points, and, in essence, reduces the problem of the existence of global saddle points to a local analysis of optimality conditions. With the use of the localization principle we obtain first necessary and sufficient conditions for the existence of a global saddle point of an augmented Lagrangian for cone constrained minimax problems via both second and first order optimality conditions. In the second part of the paper, we present a general approach to the construction of globally exact augmented Lagrangian functions. The general approach developed in this paper allowed us not only to sharpen most of the existing results on globally exact augmented Lagrangians, but also to construct first globally exact augmented Lagrangian functions for equality constrained optimization problems, for nonlinear second order cone programs and for nonlinear semidefinite programs. These globally exact augmented Lagrangians can be utilized in order to design new superlinearly (or even quadratically) convergent optimization methods for cone constrained optimization problems.

Suggested Citation

  • M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
  • Handle: RePEc:spr:jglopt:v:71:y:2018:i:2:d:10.1007_s10898-017-0603-0
    DOI: 10.1007/s10898-017-0603-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-017-0603-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-017-0603-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hezhi Luo & Huixian Wu & Jianzhen Liu, 2015. "On Saddle Points in Semidefinite Optimization via Separation Scheme," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 113-150, April.
    2. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part I: Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 738-762, June.
    3. H. Wu & H. Luo, 2012. "Saddle points of general augmented Lagrangians for constrained nonconvex optimization," Journal of Global Optimization, Springer, vol. 53(4), pages 683-697, August.
    4. Huixian Wu & Hezhi Luo & Xiaodong Ding & Guanting Chen, 2013. "Global convergence of modified augmented Lagrangian methods for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 56(3), pages 531-558, December.
    5. Y. J. Liu & L. W. Zhang, 2008. "Convergence of the Augmented Lagrangian Method for Nonlinear Optimization Problems over Second-Order Cones," Journal of Optimization Theory and Applications, Springer, vol. 139(3), pages 557-575, December.
    6. T. Son & D. Kim & N. Tam, 2012. "Weak stability and strong duality of a class of nonconvex infinite programs via augmented Lagrangian," Journal of Global Optimization, Springer, vol. 53(2), pages 165-184, June.
    7. V. F. Demyanov & V. N. Malozemov, 2014. "Alternance Form of Optimality Conditions in the Finite-Dimensional Space," Springer Optimization and Its Applications, in: Vladimir F. Demyanov & Panos M. Pardalos & Mikhail Batsyn (ed.), Constructive Nonsmooth Analysis and Related Topics, edition 127, pages 185-203, Springer.
    8. Gianni Di Pillo & Stefano Lucidi & Laura Palagi, 2005. "Convergence to Second-Order Stationary Points of a Primal-Dual Algorithm Model for Nonlinear Programming," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 897-915, November.
    9. Z. K. Xu, 1997. "Local Saddle Points and Convexification for Nonconvex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 94(3), pages 739-746, September.
    10. Jinchuan Zhou & Naihua Xiu & Changyu Wang, 2012. "Saddle point and exact penalty representation for generalized proximal Lagrangians," Journal of Global Optimization, Springer, vol. 54(4), pages 669-687, December.
    11. Hezhi Luo & Huixian Wu & Jianzhen Liu, 2013. "Some Results on Augmented Lagrangians in Constrained Global Optimization via Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 360-385, November.
    12. V. F. Demyanov & V. N. Malozemov, 2014. "Optimality Conditions in Terms of Alternance: Two Approaches," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 805-820, September.
    13. H. Luo & H. Wu & G. Chen, 2012. "On the convergence of augmented Lagrangian methods for nonlinear semidefinite programming," Journal of Global Optimization, Springer, vol. 54(3), pages 599-618, November.
    14. H. Z. Luo & G. Mastroeni & H. X. Wu, 2010. "Separation Approach for Augmented Lagrangians in Constrained Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 144(2), pages 275-290, February.
    15. R. S. Burachik & X. Q. Yang & Y. Y. Zhou, 2017. "Existence of Augmented Lagrange Multipliers for Semi-infinite Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 471-503, May.
    16. Changyu Wang & Qian Liu & Biao Qu, 2017. "Global saddle points of nonlinear augmented Lagrangian functions," Journal of Global Optimization, Springer, vol. 68(1), pages 125-146, May.
    17. Liwei Zhang & Jian Gu & Xiantao Xiao, 2011. "A class of nonlinear Lagrangians for nonconvex second order cone programming," Computational Optimization and Applications, Springer, vol. 49(1), pages 61-99, May.
    18. J. Li & S. Q. Feng & Z. Zhang, 2013. "A Unified Approach for Constrained Extremum Problems: Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 69-92, October.
    19. Jinchuan Zhou & Jein-Shan Chen, 2015. "On the existence of saddle points for nonlinear second-order cone programming problems," Journal of Global Optimization, Springer, vol. 62(3), pages 459-480, July.
    20. X. X. Huang & X. Q. Yang, 2003. "A Unified Augmented Lagrangian Approach to Duality and Exact Penalization," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 533-552, August.
    21. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part II: Special Duality Schemes," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 763-782, June.
    22. Alexander Shapiro & Jie Sun, 2004. "Some Properties of the Augmented Lagrangian in Cone Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 479-491, August.
    23. C. Y. Wang & X. Q. Yang & X. M. Yang, 2007. "Unified Nonlinear Lagrangian Approach to Duality and Optimal Paths," Journal of Optimization Theory and Applications, Springer, vol. 135(1), pages 85-100, October.
    24. Qian Liu & Wan Tang & Xin Yang, 2009. "Properties of saddle points for generalized augmented Lagrangian," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 111-124, March.
    25. J. Sun & L. W. Zhang & Y. Wu, 2006. "Properties of the Augmented Lagrangian in Nonlinear Semidefinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 129(3), pages 437-456, June.
    26. Defeng Sun & Jie Sun, 2008. "Löwner's Operator and Spectral Functions in Euclidean Jordan Algebras," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 421-445, May.
    27. Yu Zhou & Jin Zhou & Xiao Yang, 2014. "Existence of augmented Lagrange multipliers for cone constrained optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 243-260, February.
    28. R. S. Burachik & A. N. Iusem & J. G. Melo, 2010. "Duality and Exact Penalization for General Augmented Lagrangians," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 125-140, October.
    29. Roman Polyak, 2001. "Log-Sigmoid Multipliers Method in Constrained Optimization," Annals of Operations Research, Springer, vol. 101(1), pages 427-460, January.
    30. H. Wu & H. Luo & J. Yang, 2014. "Nonlinear separation approach for the augmented Lagrangian in nonlinear semidefinite programming," Journal of Global Optimization, Springer, vol. 59(4), pages 695-727, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions I: Parametric Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 728-744, March.
    2. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions II: Extended Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 745-762, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions I: Parametric Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 728-744, March.
    2. Hezhi Luo & Huixian Wu & Jianzhen Liu, 2015. "On Saddle Points in Semidefinite Optimization via Separation Scheme," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 113-150, April.
    3. Shengjie Li & Yangdong Xu & Manxue You & Shengkun Zhu, 2018. "Constrained Extremum Problems and Image Space Analysis–Part I: Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 609-636, June.
    4. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions II: Extended Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 745-762, March.
    5. Jinchuan Zhou & Jein-Shan Chen, 2015. "On the existence of saddle points for nonlinear second-order cone programming problems," Journal of Global Optimization, Springer, vol. 62(3), pages 459-480, July.
    6. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part I: Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 738-762, June.
    7. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part II: Special Duality Schemes," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 763-782, June.
    8. Manxue You & Shengjie Li, 2017. "Separation Functions and Optimality Conditions in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 527-544, November.
    9. Shengkun Zhu, 2018. "Image Space Analysis to Lagrange-Type Duality for Constrained Vector Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 743-769, June.
    10. Huixian Wu & Hezhi Luo & Xiaodong Ding & Guanting Chen, 2013. "Global convergence of modified augmented Lagrangian methods for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 56(3), pages 531-558, December.
    11. H. Wu & H. Luo & J. Yang, 2014. "Nonlinear separation approach for the augmented Lagrangian in nonlinear semidefinite programming," Journal of Global Optimization, Springer, vol. 59(4), pages 695-727, August.
    12. Changyu Wang & Qian Liu & Biao Qu, 2017. "Global saddle points of nonlinear augmented Lagrangian functions," Journal of Global Optimization, Springer, vol. 68(1), pages 125-146, May.
    13. Yu Zhou & Jin Zhou & Xiao Yang, 2014. "Existence of augmented Lagrange multipliers for cone constrained optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 243-260, February.
    14. Letizia Pellegrini & Shengkun Zhu, 2018. "Constrained Extremum Problems, Regularity Conditions and Image Space Analysis. Part II: The Vector Finite-Dimensional Case," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 788-810, June.
    15. Yang-Dong Xu & Cheng-Ling Zhou & Sheng-Kun Zhu, 2021. "Image Space Analysis for Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 311-343, October.
    16. J. Li & L. Yang, 2018. "Set-Valued Systems with Infinite-Dimensional Image and Applications," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 868-895, December.
    17. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "A Unified Characterization of Multiobjective Robustness via Separation," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 86-102, October.
    18. Jiawei Chen & Shengjie Li & Zhongping Wan & Jen-Chih Yao, 2015. "Vector Variational-Like Inequalities with Constraints: Separation and Alternative," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 460-479, August.
    19. H. Luo & H. Wu & G. Chen, 2012. "On the convergence of augmented Lagrangian methods for nonlinear semidefinite programming," Journal of Global Optimization, Springer, vol. 54(3), pages 599-618, November.
    20. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "Characterizations for Optimality Conditions of General Robust Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 835-856, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:71:y:2018:i:2:d:10.1007_s10898-017-0603-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.