IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v161y2014i3d10.1007_s10957-013-0468-4.html
   My bibliography  Save this article

Unified Duality Theory for Constrained Extremum Problems. Part I: Image Space Analysis

Author

Listed:
  • S. K. Zhu

    (Chongqing University)

  • S. J. Li

    (Chongqing University)

Abstract

This paper is concerned with a unified duality theory for a constrained extremum problem. Following along with the image space analysis, a unified duality scheme for a constrained extremum problem is proposed by virtue of the class of regular weak separation functions in the image space. Some equivalent characterizations of the zero duality property are obtained under an appropriate assumption. Moreover, some necessary and sufficient conditions for the zero duality property are also established in terms of the perturbation function. In the accompanying paper, the Lagrange-type duality, Wolfe duality and Mond–Weir duality will be discussed as special duality schemes in a unified interpretation. Simultaneously, three practical classes of regular weak separation functions will be also considered.

Suggested Citation

  • S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part I: Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 738-762, June.
  • Handle: RePEc:spr:joptap:v:161:y:2014:i:3:d:10.1007_s10957-013-0468-4
    DOI: 10.1007/s10957-013-0468-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0468-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0468-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. M. Rubinov & A. Uderzo, 2001. "On Global Optimality Conditions via Separation Functions," Journal of Optimization Theory and Applications, Springer, vol. 109(2), pages 345-370, May.
    2. Hezhi Luo & Huixian Wu & Jianzhen Liu, 2013. "Some Results on Augmented Lagrangians in Constrained Global Optimization via Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 360-385, November.
    3. A. M. Rubinov & X. X. Huang & X. Q. Yang, 2002. "The Zero Duality Gap Property and Lower Semicontinuity of the Perturbation Function," Mathematics of Operations Research, INFORMS, vol. 27(4), pages 775-791, November.
    4. G. Mastroeni, 2012. "On the image space analysis for vector quasi-equilibrium problems with a variable ordering relation," Journal of Global Optimization, Springer, vol. 53(2), pages 203-214, June.
    5. J. Li & N. J. Huang, 2010. "Image Space Analysis for Vector Variational Inequalities with Matrix Inequality Constraints and Applications," Journal of Optimization Theory and Applications, Springer, vol. 145(3), pages 459-477, June.
    6. S. J. Li & Y. D. Xu & S. K. Zhu, 2012. "Nonlinear Separation Approach to Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 842-856, September.
    7. H. Z. Luo & G. Mastroeni & H. X. Wu, 2010. "Separation Approach for Augmented Lagrangians in Constrained Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 144(2), pages 275-290, February.
    8. X. X. Huang & X. Q. Yang, 2003. "A Unified Augmented Lagrangian Approach to Duality and Exact Penalization," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 533-552, August.
    9. C. Y. Wang & X. Q. Yang & X. M. Yang, 2007. "Unified Nonlinear Lagrangian Approach to Duality and Optimal Paths," Journal of Optimization Theory and Applications, Springer, vol. 135(1), pages 85-100, October.
    10. G. Mastroeni, 2010. "Some applications of the image space analysis to the duality theory for constrained extremum problems," Journal of Global Optimization, Springer, vol. 46(4), pages 603-614, April.
    11. J. Li & S. Q. Feng & Z. Zhang, 2013. "A Unified Approach for Constrained Extremum Problems: Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 69-92, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengkun Zhu, 2018. "Image Space Analysis to Lagrange-Type Duality for Constrained Vector Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 743-769, June.
    2. Hezhi Luo & Huixian Wu & Jianzhen Liu, 2015. "On Saddle Points in Semidefinite Optimization via Separation Scheme," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 113-150, April.
    3. Shengjie Li & Yangdong Xu & Manxue You & Shengkun Zhu, 2018. "Constrained Extremum Problems and Image Space Analysis–Part I: Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 609-636, June.
    4. J. Li & L. Yang, 2018. "Set-Valued Systems with Infinite-Dimensional Image and Applications," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 868-895, December.
    5. M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
    6. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions I: Parametric Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 728-744, March.
    7. Shengkun Zhu, 2018. "Constrained Extremum Problems, Regularity Conditions and Image Space Analysis. Part I: The Scalar Finite-Dimensional Case," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 770-787, June.
    8. Yang-Dong Xu & Cheng-Ling Zhou & Sheng-Kun Zhu, 2021. "Image Space Analysis for Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 311-343, October.
    9. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "Characterizations for Optimality Conditions of General Robust Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 835-856, June.
    10. Jiawei Chen & La Huang & Shengjie Li, 2018. "Separations and Optimality of Constrained Multiobjective Optimization via Improvement Sets," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 794-823, September.
    11. Zhiang Zhou & Wang Chen & Xinmin Yang, 2019. "Scalarizations and Optimality of Constrained Set-Valued Optimization Using Improvement Sets and Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 944-962, December.
    12. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "A Unified Characterization of Multiobjective Robustness via Separation," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 86-102, October.
    13. Letizia Pellegrini & Shengkun Zhu, 2018. "Constrained Extremum Problems, Regularity Conditions and Image Space Analysis. Part II: The Vector Finite-Dimensional Case," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 788-810, June.
    14. Jiawei Chen & Shengjie Li & Zhongping Wan & Jen-Chih Yao, 2015. "Vector Variational-Like Inequalities with Constraints: Separation and Alternative," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 460-479, August.
    15. Manxue You & Shengjie Li, 2017. "Separation Functions and Optimality Conditions in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 527-544, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part II: Special Duality Schemes," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 763-782, June.
    2. Shengjie Li & Yangdong Xu & Manxue You & Shengkun Zhu, 2018. "Constrained Extremum Problems and Image Space Analysis–Part I: Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 609-636, June.
    3. M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
    4. Shengkun Zhu, 2018. "Image Space Analysis to Lagrange-Type Duality for Constrained Vector Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 743-769, June.
    5. Manxue You & Shengjie Li, 2017. "Separation Functions and Optimality Conditions in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 527-544, November.
    6. Y. D. Xu & S. J. Li, 2013. "Optimality Conditions for Generalized Ky Fan Quasi-Inequalities with Applications," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 663-684, June.
    7. Hezhi Luo & Huixian Wu & Jianzhen Liu, 2015. "On Saddle Points in Semidefinite Optimization via Separation Scheme," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 113-150, April.
    8. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions I: Parametric Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 728-744, March.
    9. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "A Unified Characterization of Multiobjective Robustness via Separation," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 86-102, October.
    10. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "Characterizations for Optimality Conditions of General Robust Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 835-856, June.
    11. Yu Zhou & Jin Zhou & Xiao Yang, 2014. "Existence of augmented Lagrange multipliers for cone constrained optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 243-260, February.
    12. R. S. Burachik & A. N. Iusem & J. G. Melo, 2010. "Duality and Exact Penalization for General Augmented Lagrangians," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 125-140, October.
    13. Jinchuan Zhou & Jein-Shan Chen, 2015. "On the existence of saddle points for nonlinear second-order cone programming problems," Journal of Global Optimization, Springer, vol. 62(3), pages 459-480, July.
    14. Letizia Pellegrini & Shengkun Zhu, 2018. "Constrained Extremum Problems, Regularity Conditions and Image Space Analysis. Part II: The Vector Finite-Dimensional Case," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 788-810, June.
    15. Y. Y. Zhou & X. Q. Yang, 2009. "Duality and Penalization in Optimization via an Augmented Lagrangian Function with Applications," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 171-188, January.
    16. Qian Liu & Wan Tang & Xin Yang, 2009. "Properties of saddle points for generalized augmented Lagrangian," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 111-124, March.
    17. H. Wu & H. Luo, 2012. "Saddle points of general augmented Lagrangians for constrained nonconvex optimization," Journal of Global Optimization, Springer, vol. 53(4), pages 683-697, August.
    18. S. J. Li & Y. D. Xu & S. K. Zhu, 2012. "Nonlinear Separation Approach to Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 842-856, September.
    19. Angelia Nedić & Asuman Ozdaglar, 2008. "Separation of Nonconvex Sets with General Augmenting Functions," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 587-605, August.
    20. C. Lalitha, 2010. "A new augmented Lagrangian approach to duality and exact penalization," Journal of Global Optimization, Springer, vol. 46(2), pages 233-245, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:161:y:2014:i:3:d:10.1007_s10957-013-0468-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.