IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v53y2012i4p683-697.html
   My bibliography  Save this article

Saddle points of general augmented Lagrangians for constrained nonconvex optimization

Author

Listed:
  • H. Wu
  • H. Luo

Abstract

No abstract is available for this item.

Suggested Citation

  • H. Wu & H. Luo, 2012. "Saddle points of general augmented Lagrangians for constrained nonconvex optimization," Journal of Global Optimization, Springer, vol. 53(4), pages 683-697, August.
  • Handle: RePEc:spr:jglopt:v:53:y:2012:i:4:p:683-697
    DOI: 10.1007/s10898-011-9731-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-011-9731-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-011-9731-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Z. K. Xu, 1997. "Local Saddle Points and Convexification for Nonconvex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 94(3), pages 739-746, September.
    2. H. Z. Luo & G. Mastroeni & H. X. Wu, 2010. "Separation Approach for Augmented Lagrangians in Constrained Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 144(2), pages 275-290, February.
    3. H. Luo & X. Sun & Y. Xu & H. Wu, 2010. "On the convergence properties of modified augmented Lagrangian methods for mathematical programming with complementarity constraints," Journal of Global Optimization, Springer, vol. 46(2), pages 217-232, February.
    4. A. M. Rubinov & X. X. Huang & X. Q. Yang, 2002. "The Zero Duality Gap Property and Lower Semicontinuity of the Perturbation Function," Mathematics of Operations Research, INFORMS, vol. 27(4), pages 775-791, November.
    5. H. Z. Luo & X. L. Sun & Y. F. Xu, 2010. "Convergence Properties of Modified and Partially-Augmented Lagrangian Methods for Mathematical Programs with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 145(3), pages 489-506, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hezhi Luo & Huixian Wu & Jianzhen Liu, 2015. "On Saddle Points in Semidefinite Optimization via Separation Scheme," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 113-150, April.
    2. H. Wu & H. Luo & J. Yang, 2014. "Nonlinear separation approach for the augmented Lagrangian in nonlinear semidefinite programming," Journal of Global Optimization, Springer, vol. 59(4), pages 695-727, August.
    3. Changyu Wang & Qian Liu & Biao Qu, 2017. "Global saddle points of nonlinear augmented Lagrangian functions," Journal of Global Optimization, Springer, vol. 68(1), pages 125-146, May.
    4. M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
    5. Hezhi Luo & Huixian Wu & Jianzhen Liu, 2013. "Some Results on Augmented Lagrangians in Constrained Global Optimization via Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 360-385, November.
    6. Jinchuan Zhou & Jein-Shan Chen, 2015. "On the existence of saddle points for nonlinear second-order cone programming problems," Journal of Global Optimization, Springer, vol. 62(3), pages 459-480, July.
    7. Huixian Wu & Hezhi Luo & Xiaodong Ding & Guanting Chen, 2013. "Global convergence of modified augmented Lagrangian methods for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 56(3), pages 531-558, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huixian Wu & Hezhi Luo & Xiaodong Ding & Guanting Chen, 2013. "Global convergence of modified augmented Lagrangian methods for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 56(3), pages 531-558, December.
    2. H. Wu & H. Luo & J. Yang, 2014. "Nonlinear separation approach for the augmented Lagrangian in nonlinear semidefinite programming," Journal of Global Optimization, Springer, vol. 59(4), pages 695-727, August.
    3. H. Luo & H. Wu & G. Chen, 2012. "On the convergence of augmented Lagrangian methods for nonlinear semidefinite programming," Journal of Global Optimization, Springer, vol. 54(3), pages 599-618, November.
    4. M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
    5. Nélida Echebest & María Daniela Sánchez & María Laura Schuverdt, 2016. "Convergence Results of an Augmented Lagrangian Method Using the Exponential Penalty Function," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 92-108, January.
    6. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part I: Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 738-762, June.
    7. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part II: Special Duality Schemes," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 763-782, June.
    8. Jinchuan Zhou & Jein-Shan Chen, 2015. "On the existence of saddle points for nonlinear second-order cone programming problems," Journal of Global Optimization, Springer, vol. 62(3), pages 459-480, July.
    9. Lei Guo & Gaoxi Li, 2024. "Approximation Methods for a Class of Non-Lipschitz Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1421-1445, September.
    10. Li, Jianling & Huang, Renshuai & Jian, Jinbao, 2015. "A superlinearly convergent QP-free algorithm for mathematical programs with equilibrium constraints," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 885-903.
    11. D. Li & X. L. Sun, 2000. "Local Convexification of the Lagrangian Function in Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 104(1), pages 109-120, January.
    12. Letizia Pellegrini & Shengkun Zhu, 2018. "Constrained Extremum Problems, Regularity Conditions and Image Space Analysis. Part II: The Vector Finite-Dimensional Case," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 788-810, June.
    13. Jean-Paul Penot, 2010. "Are dualities appropriate for duality theories in optimization?," Journal of Global Optimization, Springer, vol. 47(3), pages 503-525, July.
    14. Y. Y. Zhou & X. Q. Yang, 2009. "Duality and Penalization in Optimization via an Augmented Lagrangian Function with Applications," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 171-188, January.
    15. Yang-Dong Xu & Cheng-Ling Zhou & Sheng-Kun Zhu, 2021. "Image Space Analysis for Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 311-343, October.
    16. Christis Katsouris, 2023. "Optimal Estimation Methodologies for Panel Data Regression Models," Papers 2311.03471, arXiv.org, revised Nov 2023.
    17. Shengkun Zhu, 2018. "Image Space Analysis to Lagrange-Type Duality for Constrained Vector Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 743-769, June.
    18. Qian Liu & Wan Tang & Xin Yang, 2009. "Properties of saddle points for generalized augmented Lagrangian," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 111-124, March.
    19. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "A Unified Characterization of Multiobjective Robustness via Separation," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 86-102, October.
    20. Jean-Paul Chavas & Walter Briec, 2012. "On economic efficiency under non-convexity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(3), pages 671-701, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:53:y:2012:i:4:p:683-697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.