Existence of Augmented Lagrange Multipliers for Semi-infinite Programming Problems
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-017-1091-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Alexander Shapiro & Jie Sun, 2004. "Some Properties of the Augmented Lagrangian in Cone Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 479-491, August.
- X. X. Huang & X. Q. Yang, 2003. "A Unified Augmented Lagrangian Approach to Duality and Exact Penalization," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 533-552, August.
- S. Wang & X. Q. Yang & K. L. Teo, 2006. "Power Penalty Method for a Linear Complementarity Problem Arising from American Option Valuation," Journal of Optimization Theory and Applications, Springer, vol. 129(2), pages 227-254, May.
- Yu Zhou & Jin Zhou & Xiao Yang, 2014. "Existence of augmented Lagrange multipliers for cone constrained optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 243-260, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions I: Parametric Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 728-744, March.
- M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
- Kaiwen Meng & Xiaoqi Yang, 2015. "First- and Second-Order Necessary Conditions Via Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 720-752, June.
- Boshi Tian & Yaohua Hu & Xiaoqi Yang, 2015. "A box-constrained differentiable penalty method for nonlinear complementarity problems," Journal of Global Optimization, Springer, vol. 62(4), pages 729-747, August.
- Chao Kan & Wen Song, 2015. "Augmented Lagrangian Duality for Composite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 763-784, June.
- Yu Zhou & Jin Zhou & Xiao Yang, 2014. "Existence of augmented Lagrange multipliers for cone constrained optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 243-260, February.
- Jinchuan Zhou & Jein-Shan Chen, 2015. "On the existence of saddle points for nonlinear second-order cone programming problems," Journal of Global Optimization, Springer, vol. 62(3), pages 459-480, July.
- Y. J. Liu & L. W. Zhang, 2008. "Convergence of the Augmented Lagrangian Method for Nonlinear Optimization Problems over Second-Order Cones," Journal of Optimization Theory and Applications, Springer, vol. 139(3), pages 557-575, December.
- Yaohua Hu & Carisa Kwok Wai Yu & Xiaoqi Yang, 2019. "Incremental quasi-subgradient methods for minimizing the sum of quasi-convex functions," Journal of Global Optimization, Springer, vol. 75(4), pages 1003-1028, December.
- Yi Zhang & Liwei Zhang & Yue Wu, 2014. "The augmented Lagrangian method for a type of inverse quadratic programming problems over second-order cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 45-79, April.
- Y. Y. Zhou & X. Q. Yang, 2009. "Duality and Penalization in Optimization via an Augmented Lagrangian Function with Applications," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 171-188, January.
- Anna Clevenhaus & Matthias Ehrhardt & Michael Günther & Daniel Ševčovič, 2020. "Pricing American Options with a Non-Constant Penalty Parameter," JRFM, MDPI, vol. 13(6), pages 1-7, June.
- Wen Li & Song Wang, 2014. "A numerical method for pricing European options with proportional transaction costs," Journal of Global Optimization, Springer, vol. 60(1), pages 59-78, September.
- S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part II: Special Duality Schemes," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 763-782, June.
- Qian Liu & Wan Tang & Xin Yang, 2009. "Properties of saddle points for generalized augmented Lagrangian," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 111-124, March.
- Attipoe, David Sena & Tambue, Antoine, 2021. "Convergence of the mimetic finite difference and fitted mimetic finite difference method for options pricing," Applied Mathematics and Computation, Elsevier, vol. 401(C).
- Zhe Sun & Zhe Liu & Xiaoqi Yang, 2015. "On power penalty methods for linear complementarity problems arising from American option pricing," Journal of Global Optimization, Springer, vol. 63(1), pages 165-180, September.
- H. Luo & X. Huang & J. Peng, 2012. "Generalized weak sharp minima in cone-constrained convex optimization with applications," Computational Optimization and Applications, Springer, vol. 53(3), pages 807-821, December.
- Lesmana, Donny Citra & Wang, Song, 2015. "Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 318-330.
- Stuart M. Harwood, 2021. "Analysis of the Alternating Direction Method of Multipliers for Nonconvex Problems," SN Operations Research Forum, Springer, vol. 2(1), pages 1-29, March.
More about this item
Keywords
Semi-infinite programming; Augmented Lagrange multiplier; Optimality conditions; Sharp Lagrangian; A valley at 0 augmenting function;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:173:y:2017:i:2:d:10.1007_s10957-017-1091-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.