IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v101y2001i1p427-46010.1023-a1010938423538.html
   My bibliography  Save this article

Log-Sigmoid Multipliers Method in Constrained Optimization

Author

Listed:
  • Roman Polyak

Abstract

In this paper we introduced and analyzed the Log-Sigmoid (LS) multipliers method for constrained optimization. The LS method is to the recently developed smoothing technique as augmented Lagrangian to the penalty method or modified barrier to classical barrier methods. At the same time the LS method has some specific properties, which make it substantially different from other nonquadratic augmented Lagrangian techniques. We established convergence of the LS type penalty method under very mild assumptions on the input data and estimated the rate of convergence of the LS multipliers method under the standard second order optimality condition for both exact and nonexact minimization. Some important properties of the dual function and the dual problem, which are based on the LS Lagrangian, were discovered and the primal–dual LS method was introduced. Copyright Kluwer Academic Publishers 2001

Suggested Citation

  • Roman Polyak, 2001. "Log-Sigmoid Multipliers Method in Constrained Optimization," Annals of Operations Research, Springer, vol. 101(1), pages 427-460, January.
  • Handle: RePEc:spr:annopr:v:101:y:2001:i:1:p:427-460:10.1023/a:1010938423538
    DOI: 10.1023/A:1010938423538
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1010938423538
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1010938423538?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
    2. R. Polyak & I. Griva, 2004. "Primal-Dual Nonlinear Rescaling Method for Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 122(1), pages 111-156, July.
    3. Liwei Zhang & Jian Gu & Xiantao Xiao, 2011. "A class of nonlinear Lagrangians for nonconvex second order cone programming," Computational Optimization and Applications, Springer, vol. 49(1), pages 61-99, May.
    4. H. Luo & X. Sun & Y. Xu & H. Wu, 2010. "On the convergence properties of modified augmented Lagrangian methods for mathematical programming with complementarity constraints," Journal of Global Optimization, Springer, vol. 46(2), pages 217-232, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:101:y:2001:i:1:p:427-460:10.1023/a:1010938423538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.