IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v176y2018i3d10.1007_s10957-018-1238-0.html
   My bibliography  Save this article

A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions I: Parametric Exactness

Author

Listed:
  • M. V. Dolgopolik

    (Saint Petersburg State University)

Abstract

In this two-part study, we develop a unified approach to the analysis of the global exactness of various penalty and augmented Lagrangian functions for constrained optimization problems in finite-dimensional spaces. This approach allows one to verify in a simple and straightforward manner whether a given penalty/augmented Lagrangian function is exact, i.e., whether the problem of unconstrained minimization of this function is equivalent (in some sense) to the original constrained problem, provided the penalty parameter is sufficiently large. Our approach is based on the so-called localization principle that reduces the study of global exactness to a local analysis of a chosen merit function near globally optimal solutions. In turn, such local analysis can be performed with the use of optimality conditions and constraint qualifications. In the first paper, we introduce the concept of global parametric exactness and derive the localization principle in the parametric form. With the use of this version of the localization principle, we recover existing simple, necessary, and sufficient conditions for the global exactness of linear penalty functions and for the existence of augmented Lagrange multipliers of Rockafellar–Wets’ augmented Lagrangian. We also present completely new necessary and sufficient conditions for the global exactness of general nonlinear penalty functions and for the global exactness of a continuously differentiable penalty function for nonlinear second-order cone programming problems. We briefly discuss how one can construct a continuously differentiable exact penalty function for nonlinear semidefinite programming problems as well.

Suggested Citation

  • M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions I: Parametric Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 728-744, March.
  • Handle: RePEc:spr:joptap:v:176:y:2018:i:3:d:10.1007_s10957-018-1238-0
    DOI: 10.1007/s10957-018-1238-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1238-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1238-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part I: Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 738-762, June.
    2. Changyu Wang & Cheng Ma & Jinchuan Zhou, 2014. "A new class of exact penalty functions and penalty algorithms," Journal of Global Optimization, Springer, vol. 58(1), pages 51-73, January.
    3. Huixian Wu & Hezhi Luo & Xiaodong Ding & Guanting Chen, 2013. "Global convergence of modified augmented Lagrangian methods for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 56(3), pages 531-558, December.
    4. Y. J. Liu & L. W. Zhang, 2008. "Convergence of the Augmented Lagrangian Method for Nonlinear Optimization Problems over Second-Order Cones," Journal of Optimization Theory and Applications, Springer, vol. 139(3), pages 557-575, December.
    5. Willard I. Zangwill, 1967. "Non-Linear Programming Via Penalty Functions," Management Science, INFORMS, vol. 13(5), pages 344-358, January.
    6. M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
    7. Y. Zhou & X. Yang, 2012. "Augmented Lagrangian functions for constrained optimization problems," Journal of Global Optimization, Springer, vol. 52(1), pages 95-108, January.
    8. J. Li & S. Q. Feng & Z. Zhang, 2013. "A Unified Approach for Constrained Extremum Problems: Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 69-92, October.
    9. X. X. Huang & X. Q. Yang, 2003. "A Unified Augmented Lagrangian Approach to Duality and Exact Penalization," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 533-552, August.
    10. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part II: Special Duality Schemes," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 763-782, June.
    11. Alexander Shapiro & Jie Sun, 2004. "Some Properties of the Augmented Lagrangian in Cone Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 479-491, August.
    12. C. Y. Wang & X. Q. Yang & X. M. Yang, 2007. "Unified Nonlinear Lagrangian Approach to Duality and Optimal Paths," Journal of Optimization Theory and Applications, Springer, vol. 135(1), pages 85-100, October.
    13. Yu Zhou & Jin Zhou & Xiao Yang, 2014. "Existence of augmented Lagrange multipliers for cone constrained optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 243-260, February.
    14. C. Y. Wang & X. Q. Yang & X. M. Yang, 2013. "Nonlinear Augmented Lagrangian and Duality Theory," Mathematics of Operations Research, INFORMS, vol. 38(4), pages 740-760, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. V. Dolgopolik, 2020. "New global optimality conditions for nonsmooth DC optimization problems," Journal of Global Optimization, Springer, vol. 76(1), pages 25-55, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
    2. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions II: Extended Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 745-762, March.
    3. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part I: Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 738-762, June.
    4. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part II: Special Duality Schemes," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 763-782, June.
    5. J. Li & L. Yang, 2018. "Set-Valued Systems with Infinite-Dimensional Image and Applications," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 868-895, December.
    6. Manxue You & Shengjie Li, 2017. "Separation Functions and Optimality Conditions in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 527-544, November.
    7. R. S. Burachik & X. Q. Yang & Y. Y. Zhou, 2017. "Existence of Augmented Lagrange Multipliers for Semi-infinite Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 471-503, May.
    8. Hezhi Luo & Huixian Wu & Jianzhen Liu, 2015. "On Saddle Points in Semidefinite Optimization via Separation Scheme," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 113-150, April.
    9. Shengjie Li & Yangdong Xu & Manxue You & Shengkun Zhu, 2018. "Constrained Extremum Problems and Image Space Analysis–Part I: Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 609-636, June.
    10. Jinchuan Zhou & Jein-Shan Chen, 2015. "On the existence of saddle points for nonlinear second-order cone programming problems," Journal of Global Optimization, Springer, vol. 62(3), pages 459-480, July.
    11. Yu Zhou & Jin Zhou & Xiao Yang, 2014. "Existence of augmented Lagrange multipliers for cone constrained optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 243-260, February.
    12. Letizia Pellegrini & Shengkun Zhu, 2018. "Constrained Extremum Problems, Regularity Conditions and Image Space Analysis. Part II: The Vector Finite-Dimensional Case," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 788-810, June.
    13. Yi Zhang & Liwei Zhang & Yue Wu, 2014. "The augmented Lagrangian method for a type of inverse quadratic programming problems over second-order cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 45-79, April.
    14. Kaiwen Meng & Xiaoqi Yang, 2015. "First- and Second-Order Necessary Conditions Via Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 720-752, June.
    15. Yang-Dong Xu & Cheng-Ling Zhou & Sheng-Kun Zhu, 2021. "Image Space Analysis for Set Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 311-343, October.
    16. Shengkun Zhu, 2018. "Image Space Analysis to Lagrange-Type Duality for Constrained Vector Optimization Problems with Applications," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 743-769, June.
    17. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "A Unified Characterization of Multiobjective Robustness via Separation," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 86-102, October.
    18. X. Q. Yang & Y. Y. Zhou, 2010. "Second-Order Analysis of Penalty Function," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 445-461, August.
    19. Jiawei Chen & Shengjie Li & Zhongping Wan & Jen-Chih Yao, 2015. "Vector Variational-Like Inequalities with Constraints: Separation and Alternative," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 460-479, August.
    20. Changyu Wang & Qian Liu & Biao Qu, 2017. "Global saddle points of nonlinear augmented Lagrangian functions," Journal of Global Optimization, Springer, vol. 68(1), pages 125-146, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:176:y:2018:i:3:d:10.1007_s10957-018-1238-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.