IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v54y2012i4p669-687.html
   My bibliography  Save this article

Saddle point and exact penalty representation for generalized proximal Lagrangians

Author

Listed:
  • Jinchuan Zhou
  • Naihua Xiu
  • Changyu Wang

Abstract

In this paper, we introduce a generalized proximal Lagrangian function for the constrained nonlinear programming problem and discuss existence of its saddle points. In particular, the local saddle point is obtained by using the second-order sufficient conditions, and the global saddle point is given without requiring compactness of constraint set and uniqueness of the optimal solution. Finally, we establish equivalent relationship between global saddle points and exact penalty representations. Copyright Springer Science+Business Media, LLC. 2012

Suggested Citation

  • Jinchuan Zhou & Naihua Xiu & Changyu Wang, 2012. "Saddle point and exact penalty representation for generalized proximal Lagrangians," Journal of Global Optimization, Springer, vol. 54(4), pages 669-687, December.
  • Handle: RePEc:spr:jglopt:v:54:y:2012:i:4:p:669-687
    DOI: 10.1007/s10898-011-9784-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-011-9784-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-011-9784-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. M. Rubinov & X. X. Huang & X. Q. Yang, 2002. "The Zero Duality Gap Property and Lower Semicontinuity of the Perturbation Function," Mathematics of Operations Research, INFORMS, vol. 27(4), pages 775-791, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changyu Wang & Qian Liu & Biao Qu, 2017. "Global saddle points of nonlinear augmented Lagrangian functions," Journal of Global Optimization, Springer, vol. 68(1), pages 125-146, May.
    2. M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Y. Y. Zhou & X. Q. Yang, 2009. "Duality and Penalization in Optimization via an Augmented Lagrangian Function with Applications," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 171-188, January.
    2. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part II: Special Duality Schemes," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 763-782, June.
    3. Christis Katsouris, 2023. "Optimal Estimation Methodologies for Panel Data Regression Models," Papers 2311.03471, arXiv.org, revised Nov 2023.
    4. Qian Liu & Wan Tang & Xin Yang, 2009. "Properties of saddle points for generalized augmented Lagrangian," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 111-124, March.
    5. H. Wu & H. Luo, 2012. "Saddle points of general augmented Lagrangians for constrained nonconvex optimization," Journal of Global Optimization, Springer, vol. 53(4), pages 683-697, August.
    6. Jean-Paul Chavas & Walter Briec, 2012. "On economic efficiency under non-convexity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(3), pages 671-701, August.
    7. Angelia Nedić & Asuman Ozdaglar, 2008. "Separation of Nonconvex Sets with General Augmenting Functions," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 587-605, August.
    8. Jean Paul Chavas, 2015. "Coase Revisited: Economic Efficiency under Externalities, Transaction Costs, and Nonconvexity," Journal of Institutional and Theoretical Economics (JITE), Mohr Siebeck, Tübingen, vol. 171(4), pages 709-734, December.
    9. C. Lalitha, 2010. "A new augmented Lagrangian approach to duality and exact penalization," Journal of Global Optimization, Springer, vol. 46(2), pages 233-245, February.
    10. Chao Kan & Wen Song, 2015. "Augmented Lagrangian Duality for Composite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 763-784, June.
    11. Yu Zhou & Jin Zhou & Xiao Yang, 2014. "Existence of augmented Lagrange multipliers for cone constrained optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 243-260, February.
    12. R. S. Burachik & A. N. Iusem & J. G. Melo, 2010. "Duality and Exact Penalization for General Augmented Lagrangians," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 125-140, October.
    13. Y. Zhou & X. Yang, 2012. "Augmented Lagrangian functions for constrained optimization problems," Journal of Global Optimization, Springer, vol. 52(1), pages 95-108, January.
    14. C. Y. Wang & X. Q. Yang & X. M. Yang, 2013. "Nonlinear Augmented Lagrangian and Duality Theory," Mathematics of Operations Research, INFORMS, vol. 38(4), pages 740-760, November.
    15. Jean-Paul Penot, 2010. "Are dualities appropriate for duality theories in optimization?," Journal of Global Optimization, Springer, vol. 47(3), pages 503-525, July.
    16. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part I: Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 738-762, June.
    17. X. Q. Yang & Z. Q. Meng, 2007. "Lagrange Multipliers and Calmness Conditions of Order p," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 95-101, February.
    18. C. Y. Wang & X. Q. Yang & X. M. Yang, 2007. "Unified Nonlinear Lagrangian Approach to Duality and Optimal Paths," Journal of Optimization Theory and Applications, Springer, vol. 135(1), pages 85-100, October.
    19. Jinchuan Zhou & Jein-Shan Chen, 2015. "On the existence of saddle points for nonlinear second-order cone programming problems," Journal of Global Optimization, Springer, vol. 62(3), pages 459-480, July.
    20. Regina Burachik & Alfredo Iusem & Jefferson Melo, 2010. "A primal dual modified subgradient algorithm with sharp Lagrangian," Journal of Global Optimization, Springer, vol. 46(3), pages 347-361, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:54:y:2012:i:4:p:669-687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.