IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v69y2009i1p111-124.html
   My bibliography  Save this article

Properties of saddle points for generalized augmented Lagrangian

Author

Listed:
  • Qian Liu
  • Wan Tang
  • Xin Yang

Abstract

For inequality constrained optimization problem, we show the existence of local saddle point of generalized augmented Lagrangian under weak second-order sufficient conditions which are weaker than the second-order sufficient conditions in the literature. We further discuss the existence of global saddle points without requiring the uniqueness of the global optimal solution. Copyright Springer-Verlag 2009

Suggested Citation

  • Qian Liu & Wan Tang & Xin Yang, 2009. "Properties of saddle points for generalized augmented Lagrangian," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 111-124, March.
  • Handle: RePEc:spr:mathme:v:69:y:2009:i:1:p:111-124
    DOI: 10.1007/s00186-008-0213-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-008-0213-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-008-0213-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. X. X. Huang & X. Q. Yang, 2003. "A Unified Augmented Lagrangian Approach to Duality and Exact Penalization," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 533-552, August.
    2. A. M. Rubinov & X. X. Huang & X. Q. Yang, 2002. "The Zero Duality Gap Property and Lower Semicontinuity of the Perturbation Function," Mathematics of Operations Research, INFORMS, vol. 27(4), pages 775-791, November.
    3. D. Li & X. L. Sun, 2000. "Local Convexification of the Lagrangian Function in Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 104(1), pages 109-120, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Y. Y. Zhou & X. Q. Yang, 2009. "Duality and Penalization in Optimization via an Augmented Lagrangian Function with Applications," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 171-188, January.
    2. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part I: Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 738-762, June.
    3. S. K. Zhu & S. J. Li, 2014. "Unified Duality Theory for Constrained Extremum Problems. Part II: Special Duality Schemes," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 763-782, June.
    4. X. Q. Yang & Z. Q. Meng, 2007. "Lagrange Multipliers and Calmness Conditions of Order p," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 95-101, February.
    5. Angelia Nedić & Asuman Ozdaglar, 2008. "Separation of Nonconvex Sets with General Augmenting Functions," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 587-605, August.
    6. C. Y. Wang & X. Q. Yang & X. M. Yang, 2007. "Unified Nonlinear Lagrangian Approach to Duality and Optimal Paths," Journal of Optimization Theory and Applications, Springer, vol. 135(1), pages 85-100, October.
    7. Jinchuan Zhou & Jein-Shan Chen, 2015. "On the existence of saddle points for nonlinear second-order cone programming problems," Journal of Global Optimization, Springer, vol. 62(3), pages 459-480, July.
    8. C. Lalitha, 2010. "A new augmented Lagrangian approach to duality and exact penalization," Journal of Global Optimization, Springer, vol. 46(2), pages 233-245, February.
    9. Chao Kan & Wen Song, 2015. "Augmented Lagrangian Duality for Composite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 763-784, June.
    10. Yu Zhou & Jin Zhou & Xiao Yang, 2014. "Existence of augmented Lagrange multipliers for cone constrained optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 243-260, February.
    11. Regina Burachik & Alfredo Iusem & Jefferson Melo, 2010. "A primal dual modified subgradient algorithm with sharp Lagrangian," Journal of Global Optimization, Springer, vol. 46(3), pages 347-361, March.
    12. R. S. Burachik & A. N. Iusem & J. G. Melo, 2010. "Duality and Exact Penalization for General Augmented Lagrangians," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 125-140, October.
    13. Gulcin Dinc Yalcin & Refail Kasimbeyli, 2020. "On weak conjugacy, augmented Lagrangians and duality in nonconvex optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 199-228, August.
    14. C. Y. Wang & X. Q. Yang & X. M. Yang, 2013. "Nonlinear Augmented Lagrangian and Duality Theory," Mathematics of Operations Research, INFORMS, vol. 38(4), pages 740-760, November.
    15. Xiaoqi Yang & Zhangyou Chen & Jinchuan Zhou, 2016. "Optimality Conditions for Semi-Infinite and Generalized Semi-Infinite Programs Via Lower Order Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 984-1012, June.
    16. X. X. Huang & X. Q. Yang & K. L. Teo, 2007. "Lower-Order Penalization Approach to Nonlinear Semidefinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 1-20, January.
    17. H. Z. Luo & G. Mastroeni & H. X. Wu, 2010. "Separation Approach for Augmented Lagrangians in Constrained Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 144(2), pages 275-290, February.
    18. J. Zhai & X. X. Huang, 2014. "Calmness and Exact Penalization in Vector Optimization under Nonlinear Perturbations," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 856-872, September.
    19. Yaohua Hu & Carisa Kwok Wai Yu & Xiaoqi Yang, 2019. "Incremental quasi-subgradient methods for minimizing the sum of quasi-convex functions," Journal of Global Optimization, Springer, vol. 75(4), pages 1003-1028, December.
    20. Jean-Paul Penot, 2010. "Are dualities appropriate for duality theories in optimization?," Journal of Global Optimization, Springer, vol. 47(3), pages 503-525, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:69:y:2009:i:1:p:111-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.