IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v70y2018i3d10.1007_s10898-017-0565-2.html
   My bibliography  Save this article

A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information

Author

Listed:
  • Jian Lv

    (Zhejiang University of Finance and Economics)

  • Li-Ping Pang

    (Dalian University of Technology)

  • Fan-Yun Meng

    (Qingdao Technological University)

Abstract

We propose an inexact proximal bundle method for constrained nonsmooth nonconvex optimization problems whose objective and constraint functions are known through oracles which provide inexact information. The errors in function and subgradient evaluations might be unknown, but are merely bounded. To handle the nonconvexity, we first use the redistributed idea, and consider even more difficulties by introducing inexactness in the available information. We further examine the modified improvement function for a series of difficulties caused by the constrained functions. The numerical results show the good performance of our inexact method for a large class of nonconvex optimization problems. The approach is also assessed on semi-infinite programming problems, and some encouraging numerical experiences are provided.

Suggested Citation

  • Jian Lv & Li-Ping Pang & Fan-Yun Meng, 2018. "A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information," Journal of Global Optimization, Springer, vol. 70(3), pages 517-549, March.
  • Handle: RePEc:spr:jglopt:v:70:y:2018:i:3:d:10.1007_s10898-017-0565-2
    DOI: 10.1007/s10898-017-0565-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-017-0565-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-017-0565-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lv, Jian & Pang, Li-Ping & Wang, Jin-He, 2015. "Special backtracking proximal bundle method for nonconvex maximum eigenvalue optimization," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 635-651.
    2. O. Stein, 2004. "On Constraint Qualifications in Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 647-671, June.
    3. Robert Mifflin, 1977. "An Algorithm for Constrained Optimization with Semismooth Functions," Mathematics of Operations Research, INFORMS, vol. 2(2), pages 191-207, May.
    4. Yang Yang & Liping Pang & Xuefei Ma & Jie Shen, 2014. "Constrained Nonconvex Nonsmooth Optimization via Proximal Bundle Method," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 900-925, December.
    5. M. V. Solodov, 2003. "On Approximations with Finite Precision in Bundle Methods for Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 119(1), pages 151-165, October.
    6. W. Hare & C. Sagastizábal & M. Solodov, 2016. "A proximal bundle method for nonsmooth nonconvex functions with inexact information," Computational Optimization and Applications, Springer, vol. 63(1), pages 1-28, January.
    7. Li-Ping Pang & Jian Lv & Jin-He Wang, 2016. "Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 433-465, June.
    8. Grégory Emiel & Claudia Sagastizábal, 2010. "Incremental-like bundle methods with application to energy planning," Computational Optimization and Applications, Springer, vol. 46(2), pages 305-332, June.
    9. Krzysztof Czesław Kiwiel, 1985. "A Linearization Algorithm for Nonsmooth Minimization," Mathematics of Operations Research, INFORMS, vol. 10(2), pages 185-194, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karima Boufi & Mostafa El Haffari & Ahmed Roubi, 2020. "Optimality Conditions and a Method of Centers for Minimax Fractional Programs with Difference of Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 105-132, October.
    2. Martina Kuchlbauer & Frauke Liers & Michael Stingl, 2022. "Adaptive Bundle Methods for Nonlinear Robust Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2106-2124, July.
    3. Liping Pang & Xiaoliang Wang & Fanyun Meng, 2023. "A proximal bundle method for a class of nonconvex nonsmooth composite optimization problems," Journal of Global Optimization, Springer, vol. 86(3), pages 589-620, July.
    4. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    5. Tang, Chunming & Liu, Shuai & Jian, Jinbao & Ou, Xiaomei, 2020. "A multi-step doubly stabilized bundle method for nonsmooth convex optimization," Applied Mathematics and Computation, Elsevier, vol. 376(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan-Yun Meng & Li-Ping Pang & Jian Lv & Jin-He Wang, 2017. "An approximate bundle method for solving nonsmooth equilibrium problems," Journal of Global Optimization, Springer, vol. 68(3), pages 537-562, July.
    2. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    3. W. Hare & C. Sagastizábal & M. Solodov, 2016. "A proximal bundle method for nonsmooth nonconvex functions with inexact information," Computational Optimization and Applications, Springer, vol. 63(1), pages 1-28, January.
    4. Najmeh Hoseini Monjezi & S. Nobakhtian, 2019. "A new infeasible proximal bundle algorithm for nonsmooth nonconvex constrained optimization," Computational Optimization and Applications, Springer, vol. 74(2), pages 443-480, November.
    5. Li-Ping Pang & Fan-Yun Meng & Jian-Song Yang, 2023. "A class of infeasible proximal bundle methods for nonsmooth nonconvex multi-objective optimization problems," Journal of Global Optimization, Springer, vol. 85(4), pages 891-915, April.
    6. Li-Ping Pang & Jian Lv & Jin-He Wang, 2016. "Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 433-465, June.
    7. N. Hoseini Monjezi & S. Nobakhtian, 2022. "An inexact multiple proximal bundle algorithm for nonsmooth nonconvex multiobjective optimization problems," Annals of Operations Research, Springer, vol. 311(2), pages 1123-1154, April.
    8. Tang, Chunming & Liu, Shuai & Jian, Jinbao & Ou, Xiaomei, 2020. "A multi-step doubly stabilized bundle method for nonsmooth convex optimization," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    9. Shuai Liu, 2019. "A simple version of bundle method with linear programming," Computational Optimization and Applications, Springer, vol. 72(2), pages 391-412, March.
    10. Najmeh Hoseini Monjezi & S. Nobakhtian, 2021. "A filter proximal bundle method for nonsmooth nonconvex constrained optimization," Journal of Global Optimization, Springer, vol. 79(1), pages 1-37, January.
    11. Wim Ackooij & Welington Oliveira, 2019. "Nonsmooth and Nonconvex Optimization via Approximate Difference-of-Convex Decompositions," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 49-80, July.
    12. Xiaoqi Yang & Zhangyou Chen & Jinchuan Zhou, 2016. "Optimality Conditions for Semi-Infinite and Generalized Semi-Infinite Programs Via Lower Order Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 984-1012, June.
    13. Smail Addoune & Karima Boufi & Ahmed Roubi, 2018. "Proximal Bundle Algorithms for Nonlinearly Constrained Convex Minimax Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 212-239, October.
    14. Groetzner, Patrick & Werner, Ralf, 2022. "Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 101-115.
    15. Jie Shen & Ya-Li Gao & Fang-Fang Guo & Rui Zhao, 2018. "A Redistributed Bundle Algorithm for Generalized Variational Inequality Problems in Hilbert Spaces," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(04), pages 1-18, August.
    16. Churlzu Lim & Hanif Sherali, 2006. "A Trust Region Target Value Method for Optimizing Nondifferentiable Lagrangian Duals of Linear Programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 33-53, August.
    17. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.
    18. Sofia Zaourar & Jérôme Malick, 2013. "Prices stabilization for inexact unit-commitment problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(3), pages 341-359, December.
    19. J. J. Ye & S. Y. Wu, 2008. "First Order Optimality Conditions for Generalized Semi-Infinite Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 419-434, May.
    20. W. Ackooij & S. Demassey & P. Javal & H. Morais & W. Oliveira & B. Swaminathan, 2021. "A bundle method for nonsmooth DC programming with application to chance-constrained problems," Computational Optimization and Applications, Springer, vol. 78(2), pages 451-490, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:70:y:2018:i:3:d:10.1007_s10898-017-0565-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.