IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v46y2010i2p305-332.html
   My bibliography  Save this article

Incremental-like bundle methods with application to energy planning

Author

Listed:
  • Grégory Emiel
  • Claudia Sagastizábal

Abstract

No abstract is available for this item.

Suggested Citation

  • Grégory Emiel & Claudia Sagastizábal, 2010. "Incremental-like bundle methods with application to energy planning," Computational Optimization and Applications, Springer, vol. 46(2), pages 305-332, June.
  • Handle: RePEc:spr:coopap:v:46:y:2010:i:2:p:305-332
    DOI: 10.1007/s10589-009-9288-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-009-9288-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-009-9288-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. V. Solodov & S. K. Zavriev, 1998. "Error Stability Properties of Generalized Gradient-Type Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 98(3), pages 663-680, September.
    2. M. V. Solodov, 2003. "On Approximations with Finite Precision in Bundle Methods for Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 119(1), pages 151-165, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li-Ping Pang & Jian Lv & Jin-He Wang, 2016. "Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 433-465, June.
    2. N. Hoseini Monjezi & S. Nobakhtian, 2022. "An inexact multiple proximal bundle algorithm for nonsmooth nonconvex multiobjective optimization problems," Annals of Operations Research, Springer, vol. 311(2), pages 1123-1154, April.
    3. Fan-Yun Meng & Li-Ping Pang & Jian Lv & Jin-He Wang, 2017. "An approximate bundle method for solving nonsmooth equilibrium problems," Journal of Global Optimization, Springer, vol. 68(3), pages 537-562, July.
    4. Sofia Zaourar & Jérôme Malick, 2013. "Prices stabilization for inexact unit-commitment problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(3), pages 341-359, December.
    5. W. Hare & C. Sagastizábal & M. Solodov, 2016. "A proximal bundle method for nonsmooth nonconvex functions with inexact information," Computational Optimization and Applications, Springer, vol. 63(1), pages 1-28, January.
    6. Liping Pang & Xiaoliang Wang & Fanyun Meng, 2023. "A proximal bundle method for a class of nonconvex nonsmooth composite optimization problems," Journal of Global Optimization, Springer, vol. 86(3), pages 589-620, July.
    7. Jian Lv & Li-Ping Pang & Fan-Yun Meng, 2018. "A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information," Journal of Global Optimization, Springer, vol. 70(3), pages 517-549, March.
    8. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    9. Huiling Lin, 2012. "An inexact spectral bundle method for convex quadratic semidefinite programming," Computational Optimization and Applications, Springer, vol. 53(1), pages 45-89, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    2. Regina S. Burachik & Yaohua Hu & Xiaoqi Yang, 2022. "Interior quasi-subgradient method with non-Euclidean distances for constrained quasi-convex optimization problems in hilbert spaces," Journal of Global Optimization, Springer, vol. 83(2), pages 249-271, June.
    3. Larsson, Torbjorn & Patriksson, Michael & Stromberg, Ann-Brith, 2003. "On the convergence of conditional [var epsilon]-subgradient methods for convex programs and convex-concave saddle-point problems," European Journal of Operational Research, Elsevier, vol. 151(3), pages 461-473, December.
    4. Elena Tovbis & Vladimir Krutikov & Predrag Stanimirović & Vladimir Meshechkin & Aleksey Popov & Lev Kazakovtsev, 2023. "A Family of Multi-Step Subgradient Minimization Methods," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
    5. Fan-Yun Meng & Li-Ping Pang & Jian Lv & Jin-He Wang, 2017. "An approximate bundle method for solving nonsmooth equilibrium problems," Journal of Global Optimization, Springer, vol. 68(3), pages 537-562, July.
    6. Peng Zhang & Gejun Bao, 2018. "An Incremental Subgradient Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 711-727, March.
    7. Jinpeng Ma & Qiongling Li, 2016. "Convergence of price processes under two dynamic double auctions," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 1(1), pages 1-44, December.
    8. Shuai Liu, 2019. "A simple version of bundle method with linear programming," Computational Optimization and Applications, Springer, vol. 72(2), pages 391-412, March.
    9. W. Hare & C. Sagastizábal & M. Solodov, 2016. "A proximal bundle method for nonsmooth nonconvex functions with inexact information," Computational Optimization and Applications, Springer, vol. 63(1), pages 1-28, January.
    10. M. V. Solodov, 2003. "On Approximations with Finite Precision in Bundle Methods for Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 119(1), pages 151-165, October.
    11. Jian Lv & Li-Ping Pang & Fan-Yun Meng, 2018. "A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information," Journal of Global Optimization, Springer, vol. 70(3), pages 517-549, March.
    12. Matthias Rottmann & Kira Maag & Mathis Peyron & Hanno Gottschalk & Nataša Krejić, 2023. "Detection of Iterative Adversarial Attacks via Counter Attack," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 892-929, September.
    13. N. Hoseini Monjezi & S. Nobakhtian, 2022. "An inexact multiple proximal bundle algorithm for nonsmooth nonconvex multiobjective optimization problems," Annals of Operations Research, Springer, vol. 311(2), pages 1123-1154, April.
    14. Xiaojing Xu & Jinpeng Ma & Xiaoping Xie, 2019. "Price Convergence under a Probabilistic Double Auction," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 1113-1155, October.
    15. Jérôme Malick & Welington Oliveira & Sofia Zaourar, 2017. "Uncontrolled inexact information within bundle methods," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 5-29, March.
    16. Wenma Jin & Yair Censor & Ming Jiang, 2016. "Bounded perturbation resilience of projected scaled gradient methods," Computational Optimization and Applications, Springer, vol. 63(2), pages 365-392, March.
    17. S. Sundhar Ram & A. Nedić & V. V. Veeravalli, 2010. "Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 516-545, December.
    18. Alireza Hosseini & S. M. Hosseini, 2013. "A New Steepest Descent Differential Inclusion-Based Method for Solving General Nonsmooth Convex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 159(3), pages 698-720, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:46:y:2010:i:2:p:305-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.