IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v187y2020i1d10.1007_s10957-020-01738-2.html
   My bibliography  Save this article

Optimality Conditions and a Method of Centers for Minimax Fractional Programs with Difference of Convex Functions

Author

Listed:
  • Karima Boufi

    (Univ. Hassan 1)

  • Mostafa El Haffari

    (Univ. Abdelmalek Essaâdi)

  • Ahmed Roubi

    (Univ. Hassan 1)

Abstract

We are concerned in this paper with minimax fractional programs whose objective functions are the maximum of finite ratios of difference of convex functions, with constraints also described by difference of convex functions. Like Dinkelbach-type algorithms, the method of centers for generalized fractional programs fails to work for such problems, since the parametric subproblems may be nonconvex, whereas the latters need a global optimal solution for these subproblems. We first give necessary optimality conditions for these problems, by means of convex analysis tools, and then extend the last method to solve such programs. The method is based on solving a sequence of parametric convex problems. We show that every cluster point of the sequence of optimal solutions of these subproblems satisfies necessary optimality conditions of Karush–Kuhn–Tucker criticality type.

Suggested Citation

  • Karima Boufi & Mostafa El Haffari & Ahmed Roubi, 2020. "Optimality Conditions and a Method of Centers for Minimax Fractional Programs with Difference of Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 105-132, October.
  • Handle: RePEc:spr:joptap:v:187:y:2020:i:1:d:10.1007_s10957-020-01738-2
    DOI: 10.1007/s10957-020-01738-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-020-01738-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-020-01738-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smail Addoune & Karima Boufi & Ahmed Roubi, 2018. "Proximal Bundle Algorithms for Nonlinearly Constrained Convex Minimax Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 212-239, October.
    2. H. Boualam & A. Roubi, 2019. "Proximal bundle methods based on approximate subgradients for solving Lagrangian duals of minimax fractional programs," Journal of Global Optimization, Springer, vol. 74(2), pages 255-284, June.
    3. K. Boufi & A. Roubi, 2017. "Dual method of centers for solving generalized fractional programs," Journal of Global Optimization, Springer, vol. 69(2), pages 387-426, October.
    4. Le An & Pham Tao, 2005. "The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems," Annals of Operations Research, Springer, vol. 133(1), pages 23-46, January.
    5. A. Roubi, 2000. "Method of Centers for Generalized Fractional Programming," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 123-143, October.
    6. Jian Lv & Li-Ping Pang & Fan-Yun Meng, 2018. "A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information," Journal of Global Optimization, Springer, vol. 70(3), pages 517-549, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiao, Hongwei & Li, Binbin, 2022. "Solving min–max linear fractional programs based on image space branch-and-bound scheme," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Boualam & A. Roubi, 2019. "Proximal bundle methods based on approximate subgradients for solving Lagrangian duals of minimax fractional programs," Journal of Global Optimization, Springer, vol. 74(2), pages 255-284, June.
    2. Smail Addoune & Karima Boufi & Ahmed Roubi, 2018. "Proximal Bundle Algorithms for Nonlinearly Constrained Convex Minimax Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 212-239, October.
    3. Liping Pang & Xiaoliang Wang & Fanyun Meng, 2023. "A proximal bundle method for a class of nonconvex nonsmooth composite optimization problems," Journal of Global Optimization, Springer, vol. 86(3), pages 589-620, July.
    4. Min Tao & Jiang-Ning Li, 2023. "Error Bound and Isocost Imply Linear Convergence of DCA-Based Algorithms to D-Stationarity," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 205-232, April.
    5. Hoai An Le Thi & Van Ngai Huynh & Tao Pham Dinh, 2018. "Convergence Analysis of Difference-of-Convex Algorithm with Subanalytic Data," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 103-126, October.
    6. João Carlos O. Souza & Paulo Roberto Oliveira & Antoine Soubeyran, 2016. "Global convergence of a proximal linearized algorithm for difference of convex functions," Post-Print hal-01440298, HAL.
    7. Yuan, Quan & Liu, Binghui, 2021. "Community detection via an efficient nonconvex optimization approach based on modularity," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    8. Birbil, S.I. & Frenk, J.B.G. & Zhang, S., 2004. "Generalized Fractional Programming With User Interaction," ERIM Report Series Research in Management ERS-2004-033-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
    10. Crystal T. Nguyen & Daniel J. Luckett & Anna R. Kahkoska & Grace E. Shearrer & Donna Spruijt‐Metz & Jaimie N. Davis & Michael R. Kosorok, 2020. "Estimating individualized treatment regimes from crossover designs," Biometrics, The International Biometric Society, vol. 76(3), pages 778-788, September.
    11. M. Bierlaire & M. Thémans & N. Zufferey, 2010. "A Heuristic for Nonlinear Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 59-70, February.
    12. Ming Huang & Li-Ping Pang & Zun-Quan Xia, 2014. "The space decomposition theory for a class of eigenvalue optimizations," Computational Optimization and Applications, Springer, vol. 58(2), pages 423-454, June.
    13. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    14. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.
    15. William Haskell & J. Shanthikumar & Z. Shen, 2013. "Optimization with a class of multivariate integral stochastic order constraints," Annals of Operations Research, Springer, vol. 206(1), pages 147-162, July.
    16. H. Le Thi & A. Vaz & L. Vicente, 2012. "Optimizing radial basis functions by d.c. programming and its use in direct search for global derivative-free optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 190-214, April.
    17. Jean-Paul Penot, 2011. "The directional subdifferential of the difference of two convex functions," Journal of Global Optimization, Springer, vol. 49(3), pages 505-519, March.
    18. Annabella Astorino & Antonio Fuduli & Manlio Gaudioso, 2012. "Margin maximization in spherical separation," Computational Optimization and Applications, Springer, vol. 53(2), pages 301-322, October.
    19. Jeon, Jong-June & Kwon, Sunghoon & Choi, Hosik, 2017. "Homogeneity detection for the high-dimensional generalized linear model," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 61-74.
    20. Kaisa Joki & Adil M. Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2017. "A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes," Journal of Global Optimization, Springer, vol. 68(3), pages 501-535, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:187:y:2020:i:1:d:10.1007_s10957-020-01738-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.