IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v163y2014i3d10.1007_s10957-014-0523-9.html
   My bibliography  Save this article

Constrained Nonconvex Nonsmooth Optimization via Proximal Bundle Method

Author

Listed:
  • Yang Yang

    (Dalian University of Technology)

  • Liping Pang

    (Dalian University of Technology)

  • Xuefei Ma

    (Syracuse University)

  • Jie Shen

    (Liaoning Normal University)

Abstract

In this paper, we consider a constrained nonconvex nonsmooth optimization, in which both objective and constraint functions may not be convex or smooth. With the help of the penalty function, we transform the problem into an unconstrained one and design an algorithm in proximal bundle method in which local convexification of the penalty function is utilized to deal with it. We show that, if adding a special constraint qualification, the penalty function can be an exact one, and the sequence generated by our algorithm converges to the KKT points of the problem under a moderate assumption. Finally, some illustrative examples are given to show the good performance of our algorithm.

Suggested Citation

  • Yang Yang & Liping Pang & Xuefei Ma & Jie Shen, 2014. "Constrained Nonconvex Nonsmooth Optimization via Proximal Bundle Method," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 900-925, December.
  • Handle: RePEc:spr:joptap:v:163:y:2014:i:3:d:10.1007_s10957-014-0523-9
    DOI: 10.1007/s10957-014-0523-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-014-0523-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-014-0523-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krzysztof Czesław Kiwiel, 1985. "A Linearization Algorithm for Nonsmooth Minimization," Mathematics of Operations Research, INFORMS, vol. 10(2), pages 185-194, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Najmeh Hoseini Monjezi & S. Nobakhtian, 2021. "A filter proximal bundle method for nonsmooth nonconvex constrained optimization," Journal of Global Optimization, Springer, vol. 79(1), pages 1-37, January.
    2. Li-Ping Pang & Fan-Yun Meng & Jian-Song Yang, 2023. "A class of infeasible proximal bundle methods for nonsmooth nonconvex multi-objective optimization problems," Journal of Global Optimization, Springer, vol. 85(4), pages 891-915, April.
    3. Fan-Yun Meng & Li-Ping Pang & Jian Lv & Jin-He Wang, 2017. "An approximate bundle method for solving nonsmooth equilibrium problems," Journal of Global Optimization, Springer, vol. 68(3), pages 537-562, July.
    4. Jian Lv & Li-Ping Pang & Fan-Yun Meng, 2018. "A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information," Journal of Global Optimization, Springer, vol. 70(3), pages 517-549, March.
    5. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    6. Najmeh Hoseini Monjezi & S. Nobakhtian, 2019. "A new infeasible proximal bundle algorithm for nonsmooth nonconvex constrained optimization," Computational Optimization and Applications, Springer, vol. 74(2), pages 443-480, November.
    7. Pang, Li-Ping & Chen, Shuang & Wang, Jin-He, 2015. "Risk management in portfolio applications of non-convex stochastic programming," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 565-575.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    2. W. Hare & C. Sagastizábal & M. Solodov, 2016. "A proximal bundle method for nonsmooth nonconvex functions with inexact information," Computational Optimization and Applications, Springer, vol. 63(1), pages 1-28, January.
    3. Najmeh Hoseini Monjezi & S. Nobakhtian, 2019. "A new infeasible proximal bundle algorithm for nonsmooth nonconvex constrained optimization," Computational Optimization and Applications, Springer, vol. 74(2), pages 443-480, November.
    4. Jian Lv & Li-Ping Pang & Fan-Yun Meng, 2018. "A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information," Journal of Global Optimization, Springer, vol. 70(3), pages 517-549, March.
    5. Wim Ackooij & Welington Oliveira, 2019. "Nonsmooth and Nonconvex Optimization via Approximate Difference-of-Convex Decompositions," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 49-80, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:163:y:2014:i:3:d:10.1007_s10957-014-0523-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.