IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v74y2019i2d10.1007_s10898-019-00757-2.html
   My bibliography  Save this article

Proximal bundle methods based on approximate subgradients for solving Lagrangian duals of minimax fractional programs

Author

Listed:
  • H. Boualam

    (Laboratoire MISI, Faculté des Sciences et Techniques)

  • A. Roubi

    (Laboratoire MISI, Faculté des Sciences et Techniques)

Abstract

We are interested in this work to solve the Lagrangian dual of a generalized fractional program (GFP), which gives the minimal value of the primal problem, thanks to some duality results. With the help of a general minimax equality assumption, we give duality results under minimal assumptions. Since the associated parametric programs of the dual of GFP are always concave, we use a general approximating proximal scheme to these subproblems and construct bundle methods by means of approximate values and approximate subgradients of the dual parametric function. As for all dual algorithms, the proposed methods generate a sequence of values that converges from below to the minimal value of the GFP and a sequence of approximate solutions that converges to a solution of the Lagrangian dual of the GFP. For certain classes of problems, the convergence is at least linear.

Suggested Citation

  • H. Boualam & A. Roubi, 2019. "Proximal bundle methods based on approximate subgradients for solving Lagrangian duals of minimax fractional programs," Journal of Global Optimization, Springer, vol. 74(2), pages 255-284, June.
  • Handle: RePEc:spr:jglopt:v:74:y:2019:i:2:d:10.1007_s10898-019-00757-2
    DOI: 10.1007/s10898-019-00757-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00757-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00757-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Gugat, 1998. "Prox-Regularization Methods for Generalized Fractional Programming," Journal of Optimization Theory and Applications, Springer, vol. 99(3), pages 691-722, December.
    2. Frenk, J.B.G. & Schaible, S., 2004. "Fractional Programming," Econometric Institute Research Papers ERS-2004-074-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. K. Boufi & A. Roubi, 2017. "Dual method of centers for solving generalized fractional programs," Journal of Global Optimization, Springer, vol. 69(2), pages 387-426, October.
    4. Robert Mifflin, 1977. "An Algorithm for Constrained Optimization with Semismooth Functions," Mathematics of Operations Research, INFORMS, vol. 2(2), pages 191-207, May.
    5. A. Roubi, 2000. "Method of Centers for Generalized Fractional Programming," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 123-143, October.
    6. Frenk, J.B.G. & Schaible, S., 2004. "Fractional Programming," ERIM Report Series Research in Management ERS-2004-074-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. Smail Addoune & Karima Boufi & Ahmed Roubi, 2018. "Proximal Bundle Algorithms for Nonlinearly Constrained Convex Minimax Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 212-239, October.
    8. Frenk, J. B. G. & Kassay, G. & Kolumban, J., 2004. "On equivalent results in minimax theory," European Journal of Operational Research, Elsevier, vol. 157(1), pages 46-58, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karima Boufi & Mostafa El Haffari & Ahmed Roubi, 2020. "Optimality Conditions and a Method of Centers for Minimax Fractional Programs with Difference of Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 105-132, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smail Addoune & Karima Boufi & Ahmed Roubi, 2018. "Proximal Bundle Algorithms for Nonlinearly Constrained Convex Minimax Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 212-239, October.
    2. Karima Boufi & Mostafa El Haffari & Ahmed Roubi, 2020. "Optimality Conditions and a Method of Centers for Minimax Fractional Programs with Difference of Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 105-132, October.
    3. Yong Xia & Longfei Wang & Xiaohui Wang, 2020. "Globally minimizing the sum of a convex–concave fraction and a convex function based on wave-curve bounds," Journal of Global Optimization, Springer, vol. 77(2), pages 301-318, June.
    4. Yong Xia & Longfei Wang & Meijia Yang, 2019. "A fast algorithm for globally solving Tikhonov regularized total least squares problem," Journal of Global Optimization, Springer, vol. 73(2), pages 311-330, February.
    5. Birbil, S.I. & Frenk, J.B.G. & Zhang, S., 2004. "Generalized Fractional Programming With User Interaction," ERIM Report Series Research in Management ERS-2004-033-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    6. João Costa & Maria Alves, 2013. "Enhancing computations of nondominated solutions in MOLFP via reference points," Journal of Global Optimization, Springer, vol. 57(3), pages 617-631, November.
    7. Benson, Harold P., 2006. "Fractional programming with convex quadratic forms and functions," European Journal of Operational Research, Elsevier, vol. 173(2), pages 351-369, September.
    8. Birbil, S.I. & Frenk, J.B.G. & Zhang, S., 2004. "Generalized Fractional Programming With User Interaction," Econometric Institute Research Papers ERS-2004-033-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    9. K. Boufi & A. Roubi, 2017. "Dual method of centers for solving generalized fractional programs," Journal of Global Optimization, Springer, vol. 69(2), pages 387-426, October.
    10. Frenk, J.B.G. & Kassay, G., 2005. "Lagrangian duality and cone convexlike functions," ERIM Report Series Research in Management ERS-2005-019-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    11. Churlzu Lim & Hanif Sherali, 2006. "A Trust Region Target Value Method for Optimizing Nondifferentiable Lagrangian Duals of Linear Programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 33-53, August.
    12. Frenk, J.B.G. & Schaible, S., 2004. "Fractional Programming," ERIM Report Series Research in Management ERS-2004-074-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    13. Frenk, J.B.G. & Kassay, G., 2006. "On noncooperative games, minimax theorems and equilibrium problems," Econometric Institute Research Papers EI 2006-21, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Mingchao Xia & Qingying Lai & Yajiao Zhong & Canbing Li & Hsiao-Dong Chiang, 2016. "Aggregator-Based Interactive Charging Management System for Electric Vehicle Charging," Energies, MDPI, vol. 9(3), pages 1-14, March.
    15. Fernando Luque-Vásquez & J. Adolfo Minjárez-Sosa & Max E. Mitre-Báez, 2016. "A Note on König and Close Convexity in Minimax Theorems," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 65-71, July.
    16. Frenk, J.B.G. & Schaible, S., 2004. "Fractional Programming," Econometric Institute Research Papers ERS-2004-074-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. G. Di Pillo & L. Grippo & S. Lucidi, 1997. "Smooth Transformation of the Generalized Minimax Problem," Journal of Optimization Theory and Applications, Springer, vol. 95(1), pages 1-24, October.
    18. Tomás Prieto-Rumeau & José Lorenzo, 2015. "Approximation of zero-sum continuous-time Markov games under the discounted payoff criterion," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 799-836, October.
    19. Jian Lv & Li-Ping Pang & Fan-Yun Meng, 2018. "A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information," Journal of Global Optimization, Springer, vol. 70(3), pages 517-549, March.
    20. Jiao, Hongwei & Li, Binbin, 2022. "Solving min–max linear fractional programs based on image space branch-and-bound scheme," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:74:y:2019:i:2:d:10.1007_s10898-019-00757-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.