IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v265y2015icp635-651.html
   My bibliography  Save this article

Special backtracking proximal bundle method for nonconvex maximum eigenvalue optimization

Author

Listed:
  • Lv, Jian
  • Pang, Li-Ping
  • Wang, Jin-He

Abstract

We present a proximal bundle method for minimizing the nonconvex maximum eigenvalue function based on a real time control system. The oracle used in our proximal bundle method is able to compute separately the value and subgradient of the outer convex function. Besides, it can also calculate the value and derivatives of the smooth inner mapping. In each iteration, we solve a certain quadratic programming problem in which the smooth inner mapping is replaced by its Taylor-series linearization around the current serious step. By using the backtracking test, we can make a better approximation of the objective function. With no additional assumption, we prove the global convergence of our special bundle method. We present numerical examples demonstrating the efficiency of our algorithm on several feedback control syntheses.

Suggested Citation

  • Lv, Jian & Pang, Li-Ping & Wang, Jin-He, 2015. "Special backtracking proximal bundle method for nonconvex maximum eigenvalue optimization," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 635-651.
  • Handle: RePEc:eee:apmaco:v:265:y:2015:i:c:p:635-651
    DOI: 10.1016/j.amc.2015.05.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031500750X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.05.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huiling Lin, 2012. "An inexact spectral bundle method for convex quadratic semidefinite programming," Computational Optimization and Applications, Springer, vol. 53(1), pages 45-89, September.
    2. C. Helmberg & F. Rendl & R. Weismantel, 2000. "A Semidefinite Programming Approach to the Quadratic Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 4(2), pages 197-215, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan-Yun Meng & Li-Ping Pang & Jian Lv & Jin-He Wang, 2017. "An approximate bundle method for solving nonsmooth equilibrium problems," Journal of Global Optimization, Springer, vol. 68(3), pages 537-562, July.
    2. Li-Ping Pang & Jian Lv & Jin-He Wang, 2016. "Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 433-465, June.
    3. Jian Lv & Li-Ping Pang & Fan-Yun Meng, 2018. "A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information," Journal of Global Optimization, Springer, vol. 70(3), pages 517-549, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sven Mallach, 2021. "Inductive linearization for binary quadratic programs with linear constraints," 4OR, Springer, vol. 19(4), pages 549-570, December.
    2. Ming Huang & Li-Ping Pang & Zun-Quan Xia, 2014. "The space decomposition theory for a class of eigenvalue optimizations," Computational Optimization and Applications, Springer, vol. 58(2), pages 423-454, June.
    3. Schauer, Joachim, 2016. "Asymptotic behavior of the quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 255(2), pages 357-363.
    4. Michele Garraffa & Federico Della Croce & Fabio Salassa, 2017. "An exact semidefinite programming approach for the max-mean dispersion problem," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 71-93, July.
    5. Christoph Buchheim & Maribel Montenegro & Angelika Wiegele, 2019. "SDP-based branch-and-bound for non-convex quadratic integer optimization," Journal of Global Optimization, Springer, vol. 73(3), pages 485-514, March.
    6. Britta Schulze & Michael Stiglmayr & Luís Paquete & Carlos M. Fonseca & David Willems & Stefan Ruzika, 2020. "On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 107-132, August.
    7. Alexei Gaivoronski & Abdel Lisser & Rafael Lopez & Hu Xu, 2011. "Knapsack problem with probability constraints," Journal of Global Optimization, Springer, vol. 49(3), pages 397-413, March.
    8. Alexandre d'Aspremont & Noureddine El Karoui, 2013. "Weak Recovery Conditions from Graph Partitioning Bounds and Order Statistics," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 228-247, May.
    9. Christoph Buchheim & Emiliano Traversi, 2018. "Quadratic Combinatorial Optimization Using Separable Underestimators," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 424-437, August.
    10. Xiaojin Zheng & Xiaoling Sun & Duan Li & Yong Xia, 2010. "Duality Gap Estimation of Linear Equality Constrained Binary Quadratic Programming," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 864-880, November.
    11. X. Zheng & X. Sun & D. Li & Y. Xu, 2012. "On reduction of duality gap in quadratic knapsack problems," Journal of Global Optimization, Springer, vol. 54(2), pages 325-339, October.
    12. Gicquel, C. & Lisser, A. & Minoux, M., 2014. "An evaluation of semidefinite programming based approaches for discrete lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 237(2), pages 498-507.
    13. Ming Huang & Yue Lu & Li Ping Pang & Zun Quan Xia, 2017. "A space decomposition scheme for maximum eigenvalue functions and its applications," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(3), pages 453-490, June.
    14. Timonina-Farkas, Anna & Katsifou, Argyro & Seifert, Ralf W., 2020. "Product assortment and space allocation strategies to attract loyal and non-loyal customers," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1058-1076.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:265:y:2015:i:c:p:635-651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.