IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i20p3202-d1497411.html
   My bibliography  Save this article

Constraint Qualifications and Optimality Conditions for Nonsmooth Semidefinite Multiobjective Programming Problems with Mixed Constraints Using Convexificators

Author

Listed:
  • Balendu Bhooshan Upadhyay

    (Department of Mathematics, Indian Institute of Technology Patna, Patna 801106, India)

  • Shubham Kumar Singh

    (Department of Mathematics, Indian Institute of Technology Patna, Patna 801106, India)

  • Ioan Stancu-Minasian

    (“Gheorghe Mihoc-Caius Iacob” Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy, 050711 Bucharest, Romania)

Abstract

In this article, we investigate a class of non-smooth semidefinite multiobjective programming problems with inequality and equality constraints (in short, NSMPP). We establish the convex separation theorem for the space of symmetric matrices. Employing the properties of the convexificators, we establish Fritz John (in short, FJ)-type necessary optimality conditions for NSMPP. Subsequently, we introduce a generalized version of Abadie constraint qualification (in short, NSMPP-ACQ) for the considered problem, NSMPP. Employing NSMPP-ACQ, we establish strong Karush-Kuhn-Tucker (in short, KKT)-type necessary optimality conditions for NSMPP. Moreover, we establish sufficient optimality conditions for NSMPP under generalized convexity assumptions. In addition to this, we introduce the generalized versions of various other constraint qualifications, namely Kuhn-Tucker constraint qualification (in short, NSMPP-KTCQ), Zangwill constraint qualification (in short, NSMPP-ZCQ), basic constraint qualification (in short, NSMPP-BCQ), and Mangasarian-Fromovitz constraint qualification (in short, NSMPP-MFCQ), for the considered problem NSMPP and derive the interrelationships among them. Several illustrative examples are furnished to demonstrate the significance of the established results.

Suggested Citation

  • Balendu Bhooshan Upadhyay & Shubham Kumar Singh & Ioan Stancu-Minasian, 2024. "Constraint Qualifications and Optimality Conditions for Nonsmooth Semidefinite Multiobjective Programming Problems with Mixed Constraints Using Convexificators," Mathematics, MDPI, vol. 12(20), pages 1-21, October.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:20:p:3202-:d:1497411
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/20/3202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/20/3202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. X. F. Li, 2000. "Constraint Qualifications in Nonsmooth Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 106(2), pages 373-398, August.
    2. O. Stein, 2004. "On Constraint Qualifications in Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 647-671, June.
    3. V. Preda & I. Chiţescu, 1999. "On Constraint Qualification in Multiobjective Optimization Problems: Semidifferentiable Case," Journal of Optimization Theory and Applications, Springer, vol. 100(2), pages 417-433, February.
    4. V. Jeyakumar & D. T. Luc, 1999. "Nonsmooth Calculus, Minimality, and Monotonicity of Convexificators," Journal of Optimization Theory and Applications, Springer, vol. 101(3), pages 599-621, June.
    5. Balendu Bhooshan Upadhyay & Arnav Ghosh, 2023. "On Constraint Qualifications for Mathematical Programming Problems with Vanishing Constraints on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 1-35, October.
    6. J. Dutta & S. Chandra, 2002. "Convexifactors, Generalized Convexity, and Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 113(1), pages 41-64, April.
    7. Do Luu, 2014. "Necessary and Sufficient Conditions for Efficiency Via Convexificators," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 510-526, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. X. F. Li & J. Z. Zhang, 2006. "Necessary Optimality Conditions in Terms of Convexificators in Lipschitz Optimization," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 429-452, December.
    2. Alireza Kabgani & Majid Soleimani-damaneh & Moslem Zamani, 2017. "Optimality conditions in optimization problems with convex feasible set using convexificators," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 103-121, August.
    3. A. Kabgani & F. Lara, 2023. "Semistrictly and neatly quasiconvex programming using lower global subdifferentials," Journal of Global Optimization, Springer, vol. 86(4), pages 845-865, August.
    4. Alireza Kabgani, 2021. "Characterization of Nonsmooth Quasiconvex Functions and their Greenberg–Pierskalla’s Subdifferentials Using Semi-Quasidifferentiability notion," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 666-678, May.
    5. Do Luu, 2016. "Optimality Condition for Local Efficient Solutions of Vector Equilibrium Problems via Convexificators and Applications," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 643-665, November.
    6. Do Luu, 2014. "Necessary and Sufficient Conditions for Efficiency Via Convexificators," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 510-526, February.
    7. Do Van Luu & Manh Hung Nguyen, 2006. "On alternative theorems and necessary conditions for efficiency," Cahiers de la Maison des Sciences Economiques b06019, Université Panthéon-Sorbonne (Paris 1).
    8. X. F. Li & J. Z. Zhang, 2010. "Existence and Boundedness of the Kuhn-Tucker Multipliers in Nonsmooth Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 373-386, May.
    9. Tran Su, 2024. "Optimality analysis for $$\epsilon $$ ϵ -quasi solutions of optimization problems via $$\epsilon $$ ϵ -upper convexificators: a dual approach," Journal of Global Optimization, Springer, vol. 90(3), pages 651-669, November.
    10. Do Luu & Tran Thi Mai, 2018. "Optimality and duality in constrained interval-valued optimization," 4OR, Springer, vol. 16(3), pages 311-337, September.
    11. Min Feng & Shengjie Li & Jie Wang, 2022. "On Tucker-Type Alternative Theorems and Necessary Optimality Conditions for Nonsmooth Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 480-503, November.
    12. Tadeusz Antczak, 2023. "On directionally differentiable multiobjective programming problems with vanishing constraints," Annals of Operations Research, Springer, vol. 328(2), pages 1181-1212, September.
    13. S. K. Suneja & B. Kohli, 2011. "Optimality and Duality Results for Bilevel Programming Problem Using Convexifactors," Journal of Optimization Theory and Applications, Springer, vol. 150(1), pages 1-19, July.
    14. M. Alavi Hejazi & N. Movahedian, 2020. "A New Abadie-Type Constraint Qualification for General Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 86-101, July.
    15. J. Dutta & S. Chandra, 2002. "Convexifactors, Generalized Convexity, and Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 113(1), pages 41-64, April.
    16. M. Alavi Hejazi & N. Movahedian & S. Nobakhtian, 2018. "On Constraint Qualifications and Sensitivity Analysis for General Optimization Problems via Pseudo-Jacobians," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 778-799, December.
    17. Manh-Hung Nguyen & Do Van Luu, 2006. "On necessary conditions for efficiency in directionally differentiable optimization problems," Post-Print halshs-00118977, HAL.
    18. Arnav Ghosh & Balendu Bhooshan Upadhyay & I. M. Stancu-Minasian, 2023. "Pareto Efficiency Criteria and Duality for Multiobjective Fractional Programming Problems with Equilibrium Constraints on Hadamard Manifolds," Mathematics, MDPI, vol. 11(17), pages 1-28, August.
    19. Li-Ping Pang & Jian Lv & Jin-He Wang, 2016. "Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 433-465, June.
    20. Ali Sadeghieh & Nader Kanzi & Giuseppe Caristi & David Barilla, 2022. "On stationarity for nonsmooth multiobjective problems with vanishing constraints," Journal of Global Optimization, Springer, vol. 82(4), pages 929-949, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:20:p:3202-:d:1497411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.