Alternating direction method for bi-quadratic programming
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-010-9635-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jos F. Sturm & Shuzhong Zhang, 2003. "On Cones of Nonnegative Quadratic Functions," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 246-267, May.
- Alexander Shapiro & Jie Sun, 2004. "Some Properties of the Augmented Lagrangian in Cone Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 479-491, August.
- Immanuel Bomze & Chen Ling & Liqun Qi & Xinzhen Zhang, 2012. "Standard bi-quadratic optimization problems and unconstrained polynomial reformulations," Journal of Global Optimization, Springer, vol. 52(4), pages 663-687, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yuning Yang & Qingzhi Yang & Liqun Qi, 2014. "Approximation Bounds for Trilinear and Biquadratic Optimization Problems Over Nonconvex Constraints," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 841-858, December.
- Haibin Chen & Hongjin He & Yiju Wang & Guanglu Zhou, 2022. "An efficient alternating minimization method for fourth degree polynomial optimization," Journal of Global Optimization, Springer, vol. 82(1), pages 83-103, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shinji Yamada & Akiko Takeda, 2018. "Successive Lagrangian relaxation algorithm for nonconvex quadratic optimization," Journal of Global Optimization, Springer, vol. 71(2), pages 313-339, June.
- Ben-Tal, A. & den Hertog, D., 2011. "Immunizing Conic Quadratic Optimization Problems Against Implementation Errors," Discussion Paper 2011-060, Tilburg University, Center for Economic Research.
- Yi Zhang & Liwei Zhang & Yue Wu, 2014. "The augmented Lagrangian method for a type of inverse quadratic programming problems over second-order cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 45-79, April.
- Xinzhen Zhang & Chen Ling & Liqun Qi, 2011. "Semidefinite relaxation bounds for bi-quadratic optimization problems with quadratic constraints," Journal of Global Optimization, Springer, vol. 49(2), pages 293-311, February.
- Bomze, Immanuel M. & Gabl, Markus, 2023. "Optimization under uncertainty and risk: Quadratic and copositive approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 449-476.
- Shenglong Hu & Guoyin Li & Liqun Qi, 2016. "A Tensor Analogy of Yuan’s Theorem of the Alternative and Polynomial Optimization with Sign structure," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 446-474, February.
- M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions I: Parametric Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 728-744, March.
- Immanuel Bomze & Werner Schachinger & Gabriele Uchida, 2012. "Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 423-445, March.
- Cheng Lu & Zhibin Deng & Jing Zhou & Xiaoling Guo, 2019. "A sensitive-eigenvector based global algorithm for quadratically constrained quadratic programming," Journal of Global Optimization, Springer, vol. 73(2), pages 371-388, February.
- Jing Zhou & Shu-Cherng Fang & Wenxun Xing, 2017. "Conic approximation to quadratic optimization with linear complementarity constraints," Computational Optimization and Applications, Springer, vol. 66(1), pages 97-122, January.
- H. Luo & X. Huang & J. Peng, 2012. "Generalized weak sharp minima in cone-constrained convex optimization with applications," Computational Optimization and Applications, Springer, vol. 53(3), pages 807-821, December.
- Li, Xiaobo & Natarajan, Karthik & Teo, Chung-Piaw & Zheng, Zhichao, 2014. "Distributionally robust mixed integer linear programs: Persistency models with applications," European Journal of Operational Research, Elsevier, vol. 233(3), pages 459-473.
- Immanuel Bomze & Markus Gabl, 2021. "Interplay of non-convex quadratically constrained problems with adjustable robust optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 115-151, February.
- Stuart M. Harwood, 2021. "Analysis of the Alternating Direction Method of Multipliers for Nonconvex Problems," SN Operations Research Forum, Springer, vol. 2(1), pages 1-29, March.
- Nguyen T. V. Hang & Boris S. Mordukhovich & M. Ebrahim Sarabi, 2022. "Augmented Lagrangian method for second-order cone programs under second-order sufficiency," Journal of Global Optimization, Springer, vol. 82(1), pages 51-81, January.
- M. Locatelli, 2023. "KKT-based primal-dual exactness conditions for the Shor relaxation," Journal of Global Optimization, Springer, vol. 86(2), pages 285-301, June.
- H. Luo & H. Wu & G. Chen, 2012. "On the convergence of augmented Lagrangian methods for nonlinear semidefinite programming," Journal of Global Optimization, Springer, vol. 54(3), pages 599-618, November.
- Amir Beck & Dror Pan, 2017. "A branch and bound algorithm for nonconvex quadratic optimization with ball and linear constraints," Journal of Global Optimization, Springer, vol. 69(2), pages 309-342, October.
- R. S. Burachik & X. Q. Yang & Y. Y. Zhou, 2017. "Existence of Augmented Lagrange Multipliers for Semi-infinite Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 471-503, May.
- Chao Kan & Wen Song, 2015. "Second-order conditions for existence of augmented Lagrange multipliers for eigenvalue composite optimization problems," Journal of Global Optimization, Springer, vol. 63(1), pages 77-97, September.
More about this item
Keywords
Alternating direction method; Bi-quadratic programming; Quadratic semidefinite programming; 65F15; 65K05; 90C90;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:51:y:2011:i:3:p:429-446. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.