IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v53y2012i3p807-821.html
   My bibliography  Save this article

Generalized weak sharp minima in cone-constrained convex optimization with applications

Author

Listed:
  • H. Luo
  • X. Huang
  • J. Peng

Abstract

In this paper, we consider convex optimization problems with cone constraints (CPC in short). We study generalized weak sharp minima properties for (CPC) in the Banach space and Hilbert space settings, respectively. Some criteria and characterizations for the solution set to be a set of generalized weak sharp minima for (CPC) are derived. As an application, we propose an algorithm for (CPC) in the Hilbert space setting. Convergence analysis of this algorithm is given. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • H. Luo & X. Huang & J. Peng, 2012. "Generalized weak sharp minima in cone-constrained convex optimization with applications," Computational Optimization and Applications, Springer, vol. 53(3), pages 807-821, December.
  • Handle: RePEc:spr:coopap:v:53:y:2012:i:3:p:807-821
    DOI: 10.1007/s10589-012-9457-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-012-9457-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-012-9457-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. X. X. Huang & X. Q. Yang & K. L. Teo, 2004. "Characterizing Nonemptiness and Compactness of the Solution Set of a Convex Vector Optimization Problem with Cone Constraints and Applications," Journal of Optimization Theory and Applications, Springer, vol. 123(2), pages 391-407, November.
    2. V. Jeyakumar & G. M. Lee & N. Dinh, 2004. "Lagrange Multiplier Conditions Characterizing the Optimal Solution Sets of Cone-Constrained Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 123(1), pages 83-103, October.
    3. Alexander Shapiro & Jie Sun, 2004. "Some Properties of the Augmented Lagrangian in Cone Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 479-491, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Deng, 2009. "Characterizations of the Nonemptiness and Boundedness of Weakly Efficient Solution Sets of Convex Vector Optimization Problems in Real Reflexive Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 140(1), pages 1-7, January.
    2. X. M. Yang, 2009. "On Characterizing the Solution Sets of Pseudoinvex Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 537-542, March.
    3. César Gutiérrez & Rubén López & Vicente Novo, 2014. "Existence and Boundedness of Solutions in Infinite-Dimensional Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 515-547, August.
    4. Yi Zhang & Liwei Zhang & Yue Wu, 2014. "The augmented Lagrangian method for a type of inverse quadratic programming problems over second-order cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 45-79, April.
    5. M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
    6. César Gutiérrez & Rubén López, 2020. "On the Existence of Weak Efficient Solutions of Nonconvex Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 880-902, June.
    7. Vsevolod I. Ivanov, 2013. "Optimality Conditions and Characterizations of the Solution Sets in Generalized Convex Problems and Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 65-84, July.
    8. S. Deng, 2010. "Boundedness and Nonemptiness of the Efficient Solution Sets in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 29-42, January.
    9. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions I: Parametric Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 728-744, March.
    10. D. H. Fang & Y. Zhang, 2018. "Extended Farkas’s Lemmas and Strong Dualities for Conic Programming Involving Composite Functions," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 351-376, February.
    11. J. Sun & L. W. Zhang & Y. Wu, 2006. "Properties of the Augmented Lagrangian in Nonlinear Semidefinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 129(3), pages 437-456, June.
    12. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions II: Extended Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 745-762, March.
    13. Yarui Duan & Liguo Jiao & Pengcheng Wu & Yuying Zhou, 2022. "Existence of Pareto Solutions for Vector Polynomial Optimization Problems with Constraints," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 148-171, October.
    14. Sheng-Long Hu & Zheng-Hai Huang, 2011. "Alternating direction method for bi-quadratic programming," Journal of Global Optimization, Springer, vol. 51(3), pages 429-446, November.
    15. Jeyakumar, V. & Lee, G.M. & Dinh, N., 2006. "Characterizations of solution sets of convex vector minimization problems," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1380-1395, November.
    16. Stuart M. Harwood, 2021. "Analysis of the Alternating Direction Method of Multipliers for Nonconvex Problems," SN Operations Research Forum, Springer, vol. 2(1), pages 1-29, March.
    17. Nguyen T. V. Hang & Boris S. Mordukhovich & M. Ebrahim Sarabi, 2022. "Augmented Lagrangian method for second-order cone programs under second-order sufficiency," Journal of Global Optimization, Springer, vol. 82(1), pages 51-81, January.
    18. X. Huang & J. Yao, 2013. "Characterizations of the nonemptiness and compactness for solution sets of convex set-valued optimization problems," Journal of Global Optimization, Springer, vol. 55(3), pages 611-626, March.
    19. H. Luo & H. Wu & G. Chen, 2012. "On the convergence of augmented Lagrangian methods for nonlinear semidefinite programming," Journal of Global Optimization, Springer, vol. 54(3), pages 599-618, November.
    20. N. V. Tuyen & C.-F. Wen & T. Q. Son, 2022. "An approach to characterizing $$\epsilon $$ ϵ -solution sets of convex programs," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 249-269, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:53:y:2012:i:3:p:807-821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.