Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-011-9749-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Berry, Michael W. & Browne, Murray & Langville, Amy N. & Pauca, V. Paul & Plemmons, Robert J., 2007. "Algorithms and applications for approximate nonnegative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 155-173, September.
- Mohan, S.R. & Talman, A.J.J., 1998.
"Refinement of solutions to the linear complimentarity problem,"
Discussion Paper
1998-78, Tilburg University, Center for Economic Research.
- Mohan, S.R. & Talman, A.J.J., 1998. "Refinement of solutions to the linear complimentarity problem," Other publications TiSEM e54c1f99-3de9-475d-a8e5-7, Tilburg University, School of Economics and Management.
- Masakazu Kojima & Nimrod Megiddo & Shinji Mizuno, 1993. "A General Framework of Continuation Methods for Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 18(4), pages 945-963, November.
- Richard Cottle, 2010. "A field guide to the matrix classes found in the literature of the linear complementarity problem," Journal of Global Optimization, Springer, vol. 46(4), pages 571-580, April.
- Jos F. Sturm & Shuzhong Zhang, 2003. "On Cones of Nonnegative Quadratic Functions," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 246-267, May.
- de Klerk, E., 2008. "The complexity of optimizing over a simplex, hypercube or sphere : A short survey," Other publications TiSEM 485b6860-cf1d-4cad-97b8-2, Tilburg University, School of Economics and Management.
- A. Pinto da Costa & A. Seeger, 2010. "Cone-constrained eigenvalue problems: theory and algorithms," Computational Optimization and Applications, Springer, vol. 45(1), pages 25-57, January.
- de Klerk, E. & Laurent, M. & Parrilo, P., 2005. "On the equivalence of algebraic approaches to the minimization of forms on the simplex," Other publications TiSEM 894d686e-2a57-43b2-b03a-a, Tilburg University, School of Economics and Management.
- T. E. S. Raghavan & Zamir Syed, 2002. "Computing Stationary Nash Equilibria of Undiscounted Single-Controller Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 27(2), pages 384-400, May.
- Karthik Natarajan & Chung Piaw Teo & Zhichao Zheng, 2011. "Mixed 0-1 Linear Programs Under Objective Uncertainty: A Completely Positive Representation," Operations Research, INFORMS, vol. 59(3), pages 713-728, June.
- C. Humes & J. Ou & P. R. Kumar, 1997. "The Delay of Open Markovian Queueing Networks: Uniform Functional Bounds, Heavy Traffic Pole Multiplicities, and Stability," Mathematics of Operations Research, INFORMS, vol. 22(4), pages 921-954, November.
- Bomze, Immanuel M., 2012. "Copositive optimization – Recent developments and applications," European Journal of Operational Research, Elsevier, vol. 216(3), pages 509-520.
- Etienne Klerk, 2008. "The complexity of optimizing over a simplex, hypercube or sphere: a short survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(2), pages 111-125, June.
- A. Hassouni & A. Lahlou & A. Lamghari, 2005. "Existence Theorems for Linear Complementarity Problems on Solid Closed Convex Cones," Journal of Optimization Theory and Applications, Springer, vol. 126(2), pages 225-246, August.
- M. V. Solodov, 1997. "Stationary Points of Bound Constrained Minimization Reformulations of Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 94(2), pages 449-467, August.
- Dobre, C., 2011. "Semidefinite programming approaches for structured combinatorial optimization problems," Other publications TiSEM e1ec09bd-b024-4dec-acad-7, Tilburg University, School of Economics and Management.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- João Gouveia & Ting Kei Pong & Mina Saee, 2020. "Inner approximating the completely positive cone via the cone of scaled diagonally dominant matrices," Journal of Global Optimization, Springer, vol. 76(2), pages 383-405, February.
- Andrey Afonin & Roland Hildebrand & Peter J. C. Dickinson, 2021. "The extreme rays of the $$6\times 6$$ 6 × 6 copositive cone," Journal of Global Optimization, Springer, vol. 79(1), pages 153-190, January.
- Abdeljelil Baccari & Mourad Naffouti, 2016. "Copositivity and Sparsity Relations Using Spectral Properties," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 998-1007, December.
- Bomze, Immanuel M. & Gabl, Markus, 2023. "Optimization under uncertainty and risk: Quadratic and copositive approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 449-476.
- Alexander Engau & Miguel Anjos & Immanuel Bomze, 2013. "Constraint selection in a build-up interior-point cutting-plane method for solving relaxations of the stable-set problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(1), pages 35-59, August.
- Zhijian Lai & Akiko Yoshise, 2022. "Completely positive factorization by a Riemannian smoothing method," Computational Optimization and Applications, Springer, vol. 83(3), pages 933-966, December.
- Peter Dickinson & Luuk Gijben, 2014. "On the computational complexity of membership problems for the completely positive cone and its dual," Computational Optimization and Applications, Springer, vol. 57(2), pages 403-415, March.
- Immanuel M. Bomze & Jianqiang Cheng & Peter J. C. Dickinson & Abdel Lisser & Jia Liu, 2019. "Notoriously hard (mixed-)binary QPs: empirical evidence on new completely positive approaches," Computational Management Science, Springer, vol. 16(4), pages 593-619, October.
- Carmo Brás & Gabriele Eichfelder & Joaquim Júdice, 2016. "Copositivity tests based on the linear complementarity problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 461-493, March.
- Faizan Ahmed & Mirjam Dür & Georg Still, 2013. "Copositive Programming via Semi-Infinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 322-340, November.
- Immanuel M. Bomze & Bo Peng, 2023. "Conic formulation of QPCCs applied to truly sparse QPs," Computational Optimization and Applications, Springer, vol. 84(3), pages 703-735, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bomze, Immanuel M., 2012. "Copositive optimization – Recent developments and applications," European Journal of Operational Research, Elsevier, vol. 216(3), pages 509-520.
- Li, Xiaobo & Natarajan, Karthik & Teo, Chung-Piaw & Zheng, Zhichao, 2014. "Distributionally robust mixed integer linear programs: Persistency models with applications," European Journal of Operational Research, Elsevier, vol. 233(3), pages 459-473.
- Peter Dickinson & Luuk Gijben, 2014. "On the computational complexity of membership problems for the completely positive cone and its dual," Computational Optimization and Applications, Springer, vol. 57(2), pages 403-415, March.
- Bomze, Immanuel M. & Gabl, Markus, 2023. "Optimization under uncertainty and risk: Quadratic and copositive approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 449-476.
- Immanuel M. Bomze & Werner Schachinger & Reinhard Ullrich, 2018. "The Complexity of Simple Models—A Study of Worst and Typical Hard Cases for the Standard Quadratic Optimization Problem," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 651-674, May.
- Maziar Salahi, 2010. "Convex optimization approach to a single quadratically constrained quadratic minimization problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(2), pages 181-187, June.
- Immanuel Bomze & Markus Gabl, 2021. "Interplay of non-convex quadratically constrained problems with adjustable robust optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 115-151, February.
- Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2020. "An active-set algorithmic framework for non-convex optimization problems over the simplex," Computational Optimization and Applications, Springer, vol. 77(1), pages 57-89, September.
- Boglárka G.-Tóth & Eligius M. T. Hendrix & Leocadio G. Casado & Frédéric Messine, 2024. "On Dealing with Minima at the Border of a Simplicial Feasible Area in Simplicial Branch and Bound," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1880-1909, November.
- Bo Zhang & YueLin Gao & Xia Liu & XiaoLi Huang, 2023. "Outcome-space branch-and-bound outer approximation algorithm for a class of non-convex quadratic programming problems," Journal of Global Optimization, Springer, vol. 86(1), pages 61-92, May.
- Immanuel M. Bomze, 2018. "Building a completely positive factorization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(2), pages 287-305, June.
- W. Ackooij & A. Frangioni & W. Oliveira, 2016. "Inexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite support," Computational Optimization and Applications, Springer, vol. 65(3), pages 637-669, December.
- de Klerk, E. & Laurent, M., 2010. "Error bounds for some semidefinite programming approaches to polynomial minimization on the hypercube," Other publications TiSEM 619d9658-77df-4b5e-9868-0, Tilburg University, School of Economics and Management.
- Deng, Zhibin & Fang, Shu-Cherng & Jin, Qingwei & Xing, Wenxun, 2013. "Detecting copositivity of a symmetric matrix by an adaptive ellipsoid-based approximation scheme," European Journal of Operational Research, Elsevier, vol. 229(1), pages 21-28.
- Cheng Lu & Zhibin Deng & Qingwei Jin, 2017. "An eigenvalue decomposition based branch-and-bound algorithm for nonconvex quadratic programming problems with convex quadratic constraints," Journal of Global Optimization, Springer, vol. 67(3), pages 475-493, March.
- Lek-Heng Lim, 2017. "Self-concordance is NP-hard," Journal of Global Optimization, Springer, vol. 68(2), pages 357-366, June.
- de Klerk, Etienne & Laurent, Monique, 2019. "A survey of semidefinite programming approaches to the generalized problem of moments and their error analysis," Other publications TiSEM d956492f-3e25-4dda-a5e2-e, Tilburg University, School of Economics and Management.
- Guanglin Xu & Samuel Burer, 2018. "A data-driven distributionally robust bound on the expected optimal value of uncertain mixed 0-1 linear programming," Computational Management Science, Springer, vol. 15(1), pages 111-134, January.
- Immanuel Bomze & Stefan Gollowitzer & E. Yıldırım, 2014. "Rounding on the standard simplex: regular grids for global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 243-258, July.
- Marco Locatelli, 2013. "Approximation algorithm for a class of global optimization problems," Journal of Global Optimization, Springer, vol. 55(1), pages 13-25, January.
More about this item
Keywords
Conic optimization; Copositive matrix; Completely positive matrix; Congruence; Hadamard product; Tensor product; Schur complement; Posynomial; Conic duality; Attainability; Feasibility; Copositive reformulation; Relaxation; Game theory; Friction and contact problem; Network stability; Reliability; Queueing; Traffic; Optimal control; Switched system; Robust optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:52:y:2012:i:3:p:423-445. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.