IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v86y2023i2d10.1007_s10898-022-01258-5.html
   My bibliography  Save this article

KKT-based primal-dual exactness conditions for the Shor relaxation

Author

Listed:
  • M. Locatelli

    (Università degli Studi di Parma)

Abstract

In this work we present some exactness conditions for the Shor relaxation of diagonal (or, more generally, diagonalizable) QCQPs, which extend the conditions introduced in different recent papers about the same topic. It is shown that the Shor relaxation is equivalent to two convex quadratic relaxations. Then, sufficient conditions for the exactness of the relaxations are derived from their KKT systems. It will be shown that, in some cases, by this derivation previous conditions in the literature, which can be viewed as dual conditions, since they only involve the Lagrange multipliers appearing in the KKT systems, can be extended to primal-dual conditions, which also involve the primal variables appearing in the KKT systems.

Suggested Citation

  • M. Locatelli, 2023. "KKT-based primal-dual exactness conditions for the Shor relaxation," Journal of Global Optimization, Springer, vol. 86(2), pages 285-301, June.
  • Handle: RePEc:spr:jglopt:v:86:y:2023:i:2:d:10.1007_s10898-022-01258-5
    DOI: 10.1007/s10898-022-01258-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-022-01258-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-022-01258-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jos F. Sturm & Shuzhong Zhang, 2003. "On Cones of Nonnegative Quadratic Functions," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 246-267, May.
    2. Amir Beck & Dror Pan, 2017. "A branch and bound algorithm for nonconvex quadratic optimization with ball and linear constraints," Journal of Global Optimization, Springer, vol. 69(2), pages 309-342, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shinji Yamada & Akiko Takeda, 2018. "Successive Lagrangian relaxation algorithm for nonconvex quadratic optimization," Journal of Global Optimization, Springer, vol. 71(2), pages 313-339, June.
    2. Ben-Tal, A. & den Hertog, D., 2011. "Immunizing Conic Quadratic Optimization Problems Against Implementation Errors," Discussion Paper 2011-060, Tilburg University, Center for Economic Research.
    3. Xinzhen Zhang & Chen Ling & Liqun Qi, 2011. "Semidefinite relaxation bounds for bi-quadratic optimization problems with quadratic constraints," Journal of Global Optimization, Springer, vol. 49(2), pages 293-311, February.
    4. Bomze, Immanuel M. & Gabl, Markus, 2023. "Optimization under uncertainty and risk: Quadratic and copositive approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 449-476.
    5. Immanuel Bomze & Werner Schachinger & Gabriele Uchida, 2012. "Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 423-445, March.
    6. Cheng Lu & Zhibin Deng & Jing Zhou & Xiaoling Guo, 2019. "A sensitive-eigenvector based global algorithm for quadratically constrained quadratic programming," Journal of Global Optimization, Springer, vol. 73(2), pages 371-388, February.
    7. Jing Zhou & Shu-Cherng Fang & Wenxun Xing, 2017. "Conic approximation to quadratic optimization with linear complementarity constraints," Computational Optimization and Applications, Springer, vol. 66(1), pages 97-122, January.
    8. Li, Xiaobo & Natarajan, Karthik & Teo, Chung-Piaw & Zheng, Zhichao, 2014. "Distributionally robust mixed integer linear programs: Persistency models with applications," European Journal of Operational Research, Elsevier, vol. 233(3), pages 459-473.
    9. Immanuel Bomze & Markus Gabl, 2021. "Interplay of non-convex quadratically constrained problems with adjustable robust optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 115-151, February.
    10. Nadav Hallak & Marc Teboulle, 2020. "Finding Second-Order Stationary Points in Constrained Minimization: A Feasible Direction Approach," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 480-503, August.
    11. Amir Beck & Dror Pan, 2017. "A branch and bound algorithm for nonconvex quadratic optimization with ball and linear constraints," Journal of Global Optimization, Springer, vol. 69(2), pages 309-342, October.
    12. Rujun Jiang & Duan Li, 2019. "Second order cone constrained convex relaxations for nonconvex quadratically constrained quadratic programming," Journal of Global Optimization, Springer, vol. 75(2), pages 461-494, October.
    13. Sheng-Long Hu & Zheng-Hai Huang, 2012. "Theorems of the Alternative for Inequality Systems of Real Polynomials," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 1-16, July.
    14. Wenbao Ai & Yongwei Huang & Shuzhong Zhang, 2008. "On the Low Rank Solutions for Linear Matrix Inequalities," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 965-975, November.
    15. Yu, Pengfei & Gao, Ruotian & Xing, Wenxun, 2021. "Maximizing perturbation radii for robust convex quadratically constrained quadratic programs," European Journal of Operational Research, Elsevier, vol. 293(1), pages 50-64.
    16. Bo Zhang & YueLin Gao & Xia Liu & XiaoLi Huang, 2023. "Outcome-space branch-and-bound outer approximation algorithm for a class of non-convex quadratic programming problems," Journal of Global Optimization, Springer, vol. 86(1), pages 61-92, May.
    17. Meijia Yang & Shu Wang & Yong Xia, 2022. "Toward Nonquadratic S-Lemma: New Theory and Application in Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 353-363, July.
    18. Temadher A. Almaadeed & Saeid Ansary Karbasy & Maziar Salahi & Abdelouahed Hamdi, 2022. "On Indefinite Quadratic Optimization over the Intersection of Balls and Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 246-264, July.
    19. Deng, Zhibin & Fang, Shu-Cherng & Jin, Qingwei & Xing, Wenxun, 2013. "Detecting copositivity of a symmetric matrix by an adaptive ellipsoid-based approximation scheme," European Journal of Operational Research, Elsevier, vol. 229(1), pages 21-28.
    20. Li Chen & Simai He & Shuzhong Zhang, 2011. "Tight Bounds for Some Risk Measures, with Applications to Robust Portfolio Selection," Operations Research, INFORMS, vol. 59(4), pages 847-865, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:86:y:2023:i:2:d:10.1007_s10898-022-01258-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.