IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v310y2023i2p449-476.html
   My bibliography  Save this article

Optimization under uncertainty and risk: Quadratic and copositive approaches

Author

Listed:
  • Bomze, Immanuel M.
  • Gabl, Markus

Abstract

Robust optimization and stochastic optimization are the two main paradigms for dealing with the uncertainty inherent in almost all real-world optimization problems. The core principle of robust optimization is the introduction of parameterized families of constraints. Sometimes, these complicated semi-infinite constraints can be reduced to finitely many convex constraints, so that the resulting optimization problem can be solved using standard procedures. Hence flexibility of robust optimization is limited by certain convexity requirements on various objects. However, a recent strain of literature has sought to expand applicability of robust optimization by lifting variables to a properly chosen matrix space. Doing so allows to handle situations where convexity requirements are not met immediately, but rather intermediately.

Suggested Citation

  • Bomze, Immanuel M. & Gabl, Markus, 2023. "Optimization under uncertainty and risk: Quadratic and copositive approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 449-476.
  • Handle: RePEc:eee:ejores:v:310:y:2023:i:2:p:449-476
    DOI: 10.1016/j.ejor.2022.11.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722008773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.11.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qingxia Kong & Chung-Yee Lee & Chung-Piaw Teo & Zhichao Zheng, 2013. "Scheduling Arrivals to a Stochastic Service Delivery System Using Copositive Cones," Operations Research, INFORMS, vol. 61(3), pages 711-726, June.
    2. Immanuel M. Bomze & Vaithilingam Jeyakumar & Guoyin Li, 2018. "Extended trust-region problems with one or two balls: exact copositive and Lagrangian relaxations," Journal of Global Optimization, Springer, vol. 71(3), pages 551-569, July.
    3. Immanuel Bomze & Markus Gabl, 2021. "Interplay of non-convex quadratically constrained problems with adjustable robust optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 115-151, February.
    4. Samuel Burer, 2012. "Copositive Programming," International Series in Operations Research & Management Science, in: Miguel F. Anjos & Jean B. Lasserre (ed.), Handbook on Semidefinite, Conic and Polynomial Optimization, chapter 0, pages 201-218, Springer.
    5. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    6. Guanglin Xu & Samuel Burer, 2018. "A copositive approach for two-stage adjustable robust optimization with uncertain right-hand sides," Computational Optimization and Applications, Springer, vol. 70(1), pages 33-59, May.
    7. Dimitris Bertsimas & David B. Brown, 2009. "Constructing Uncertainty Sets for Robust Linear Optimization," Operations Research, INFORMS, vol. 57(6), pages 1483-1495, December.
    8. Bomze, Immanuel M., 2012. "Copositive optimization – Recent developments and applications," European Journal of Operational Research, Elsevier, vol. 216(3), pages 509-520.
    9. Dimitris Bertsimas & Dan A. Iancu & Pablo A. Parrilo, 2010. "Optimality of Affine Policies in Multistage Robust Optimization," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 363-394, May.
    10. Jos F. Sturm & Shuzhong Zhang, 2003. "On Cones of Nonnegative Quadratic Functions," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 246-267, May.
    11. Dan A. Iancu & Mayank Sharma & Maxim Sviridenko, 2013. "Supermodularity and Affine Policies in Dynamic Robust Optimization," Operations Research, INFORMS, vol. 61(4), pages 941-956, August.
    12. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    13. Julia Sponsel & Stefan Bundfuss & Mirjam Dür, 2012. "An improved algorithm to test copositivity," Journal of Global Optimization, Springer, vol. 52(3), pages 537-551, March.
    14. Wei Xia & Juan C. Vera & Luis F. Zuluaga, 2020. "Globally Solving Nonconvex Quadratic Programs via Linear Integer Programming Techniques," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 40-56, January.
    15. Jianzhe Zhen & Ahmadreza Marandi & Danique de Moor & Dick den Hertog & Lieven Vandenberghe, 2022. "Disjoint Bilinear Optimization: A Two-Stage Robust Optimization Perspective," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2410-2427, September.
    16. Gorissen, Bram L. & Yanıkoğlu, İhsan & den Hertog, Dick, 2015. "A practical guide to robust optimization," Omega, Elsevier, vol. 53(C), pages 124-137.
    17. Immanuel Bomze & Werner Schachinger & Gabriele Uchida, 2012. "Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 423-445, March.
    18. Levent Tunçel & Henry Wolkowicz, 2012. "Strong duality and minimal representations for cone optimization," Computational Optimization and Applications, Springer, vol. 53(2), pages 619-648, October.
    19. Peter J. C. Dickinson & Janez Povh, 2013. "Moment Approximations for Set-Semidefinite Polynomials," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 57-68, October.
    20. Immanuel M. Bomze & Michael Kahr & Markus Leitner, 2021. "Trust Your Data or Not—StQP Remains StQP: Community Detection via Robust Standard Quadratic Optimization," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 301-316, February.
    21. Peter Dickinson & Luuk Gijben, 2014. "On the computational complexity of membership problems for the completely positive cone and its dual," Computational Optimization and Applications, Springer, vol. 57(2), pages 403-415, March.
    22. Riley Badenbroek & Etienne de Klerk, 2022. "An Analytic Center Cutting Plane Method to Determine Complete Positivity of a Matrix," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1115-1125, March.
    23. Gábor Pataki, 1998. "On the Rank of Extreme Matrices in Semidefinite Programs and the Multiplicity of Optimal Eigenvalues," Mathematics of Operations Research, INFORMS, vol. 23(2), pages 339-358, May.
    24. Zhenzhen Yan & Sarah Yini Gao & Chung Piaw Teo, 2018. "On the Design of Sparse but Efficient Structures in Operations," Management Science, INFORMS, vol. 64(7), pages 3421-3445, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Meijer, Frank, 2023. "Integrality and cutting planes in semidefinite programming approaches for combinatorial optimization," Other publications TiSEM b1f1088c-95fe-4b8a-9e15-c, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Immanuel Bomze & Markus Gabl, 2021. "Interplay of non-convex quadratically constrained problems with adjustable robust optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 115-151, February.
    2. Viktoryia Buhayenko & Dick den Hertog, 2017. "Adjustable Robust Optimisation approach to optimise discounts for multi-period supply chain coordination under demand uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6801-6823, November.
    3. Dimitris Bertsimas & Melvyn Sim & Meilin Zhang, 2019. "Adaptive Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(2), pages 604-618, February.
    4. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
    5. Ning Zhang & Chang Fang, 2020. "Saddle point approximation approaches for two-stage robust optimization problems," Journal of Global Optimization, Springer, vol. 78(4), pages 651-670, December.
    6. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2020. "A Primal–Dual Lifting Scheme for Two-Stage Robust Optimization," Operations Research, INFORMS, vol. 68(2), pages 572-590, March.
    7. Chassein, André & Goerigk, Marc, 2018. "Compromise solutions for robust combinatorial optimization with variable-sized uncertainty," European Journal of Operational Research, Elsevier, vol. 269(2), pages 544-555.
    8. Metzker Soares, Paula & Thevenin, Simon & Adulyasak, Yossiri & Dolgui, Alexandre, 2024. "Adaptive robust optimization for lot-sizing under yield uncertainty," European Journal of Operational Research, Elsevier, vol. 313(2), pages 513-526.
    9. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.
    10. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.
    11. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    12. Shapiro, Alexander, 2021. "Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic programming," European Journal of Operational Research, Elsevier, vol. 288(1), pages 1-13.
    13. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2019. "A distributionally robust optimization approach for surgery block allocation," European Journal of Operational Research, Elsevier, vol. 273(2), pages 740-753.
    14. Riley Badenbroek & Etienne de Klerk, 2022. "An Analytic Center Cutting Plane Method to Determine Complete Positivity of a Matrix," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1115-1125, March.
    15. Akihiro Tanaka & Akiko Yoshise, 2018. "LP-based tractable subcones of the semidefinite plus nonnegative cone," Annals of Operations Research, Springer, vol. 265(1), pages 155-182, June.
    16. Omar El Housni & Vineet Goyal, 2021. "On the Optimality of Affine Policies for Budgeted Uncertainty Sets," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 674-711, May.
    17. Areesh Mittal & Can Gokalp & Grani A. Hanasusanto, 2020. "Robust Quadratic Programming with Mixed-Integer Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 201-218, April.
    18. Perraudat, Antoine & Dauzère-Pérès, Stéphane & Vialletelle, Philippe, 2022. "Robust tactical qualification decisions in flexible manufacturing systems," Omega, Elsevier, vol. 106(C).
    19. Li, Xiaobo & Natarajan, Karthik & Teo, Chung-Piaw & Zheng, Zhichao, 2014. "Distributionally robust mixed integer linear programs: Persistency models with applications," European Journal of Operational Research, Elsevier, vol. 233(3), pages 459-473.
    20. Amir Ardestani-Jaafari & Erick Delage, 2016. "Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems," Operations Research, INFORMS, vol. 64(2), pages 474-494, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:310:y:2023:i:2:p:449-476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.