IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v66y2017i1d10.1007_s10589-016-9855-8.html
   My bibliography  Save this article

Conic approximation to quadratic optimization with linear complementarity constraints

Author

Listed:
  • Jing Zhou

    (Zhejiang University of Technology)

  • Shu-Cherng Fang

    (North Carolina State University)

  • Wenxun Xing

    (Tsinghua University)

Abstract

This paper proposes a conic approximation algorithm for solving quadratic optimization problems with linear complementarity constraints.We provide a conic reformulation and its dual for the original problem such that these three problems share the same optimal objective value. Moreover, we show that the conic reformulation problem is attainable when the original problem has a nonempty and bounded feasible domain. Since the conic reformulation is in general a hard problem, some conic relaxations are further considered. We offer a condition under which both the semidefinite relaxation and its dual problem become strictly feasible for finding a lower bound in polynomial time. For more general cases, by adaptively refining the outer approximation of the feasible set, we propose a conic approximation algorithm to identify an optimal solution or an $$\epsilon $$ ϵ -optimal solution of the original problem. A convergence proof is given under simple assumptions. Some computational results are included to illustrate the effectiveness of the proposed algorithm.

Suggested Citation

  • Jing Zhou & Shu-Cherng Fang & Wenxun Xing, 2017. "Conic approximation to quadratic optimization with linear complementarity constraints," Computational Optimization and Applications, Springer, vol. 66(1), pages 97-122, January.
  • Handle: RePEc:spr:coopap:v:66:y:2017:i:1:d:10.1007_s10589-016-9855-8
    DOI: 10.1007/s10589-016-9855-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-016-9855-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-016-9855-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jos F. Sturm & Shuzhong Zhang, 2003. "On Cones of Nonnegative Quadratic Functions," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 246-267, May.
    2. Joaquim Júdice & Ana Faustino & Isabel Ribeiro, 2002. "On the solution of NP-hard linear complementarity problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(1), pages 125-145, June.
    3. Lijie Bai & John Mitchell & Jong-Shi Pang, 2013. "On convex quadratic programs with linear complementarity constraints," Computational Optimization and Applications, Springer, vol. 54(3), pages 517-554, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaoze Li & Zhibin Deng & Cheng Lu & Junhao Wu & Jinyu Dai & Qiao Wang, 2023. "An efficient global algorithm for indefinite separable quadratic knapsack problems with box constraints," Computational Optimization and Applications, Springer, vol. 86(1), pages 241-273, September.
    2. Immanuel M. Bomze & Bo Peng, 2023. "Conic formulation of QPCCs applied to truly sparse QPs," Computational Optimization and Applications, Springer, vol. 84(3), pages 703-735, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shinji Yamada & Akiko Takeda, 2018. "Successive Lagrangian relaxation algorithm for nonconvex quadratic optimization," Journal of Global Optimization, Springer, vol. 71(2), pages 313-339, June.
    2. Ben-Tal, A. & den Hertog, D., 2011. "Immunizing Conic Quadratic Optimization Problems Against Implementation Errors," Discussion Paper 2011-060, Tilburg University, Center for Economic Research.
    3. Xinzhen Zhang & Chen Ling & Liqun Qi, 2011. "Semidefinite relaxation bounds for bi-quadratic optimization problems with quadratic constraints," Journal of Global Optimization, Springer, vol. 49(2), pages 293-311, February.
    4. Bomze, Immanuel M. & Gabl, Markus, 2023. "Optimization under uncertainty and risk: Quadratic and copositive approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 449-476.
    5. Hoai Le Thi & Tao Pham Dinh, 2011. "On solving Linear Complementarity Problems by DC programming and DCA," Computational Optimization and Applications, Springer, vol. 50(3), pages 507-524, December.
    6. Immanuel Bomze & Werner Schachinger & Gabriele Uchida, 2012. "Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 423-445, March.
    7. Cheng Lu & Zhibin Deng & Jing Zhou & Xiaoling Guo, 2019. "A sensitive-eigenvector based global algorithm for quadratically constrained quadratic programming," Journal of Global Optimization, Springer, vol. 73(2), pages 371-388, February.
    8. Francisco Jara-Moroni & John E. Mitchell & Jong-Shi Pang & Andreas Wächter, 2020. "An enhanced logical benders approach for linear programs with complementarity constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 687-714, August.
    9. Li, Xiaobo & Natarajan, Karthik & Teo, Chung-Piaw & Zheng, Zhichao, 2014. "Distributionally robust mixed integer linear programs: Persistency models with applications," European Journal of Operational Research, Elsevier, vol. 233(3), pages 459-473.
    10. Immanuel Bomze & Markus Gabl, 2021. "Interplay of non-convex quadratically constrained problems with adjustable robust optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 115-151, February.
    11. M. Locatelli, 2023. "KKT-based primal-dual exactness conditions for the Shor relaxation," Journal of Global Optimization, Springer, vol. 86(2), pages 285-301, June.
    12. J. J. Júdice & H. D. Sherali & I. M. Ribeiro & A. M. Faustino, 2007. "Complementarity Active-Set Algorithm for Mathematical Programming Problems with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 467-481, September.
    13. Amir Beck & Dror Pan, 2017. "A branch and bound algorithm for nonconvex quadratic optimization with ball and linear constraints," Journal of Global Optimization, Springer, vol. 69(2), pages 309-342, October.
    14. Yu-Ching Lee & Jong-Shi Pang & John Mitchell, 2015. "An algorithm for global solution to bi-parametric linear complementarity constrained linear programs," Journal of Global Optimization, Springer, vol. 62(2), pages 263-297, June.
    15. Rujun Jiang & Duan Li, 2019. "Second order cone constrained convex relaxations for nonconvex quadratically constrained quadratic programming," Journal of Global Optimization, Springer, vol. 75(2), pages 461-494, October.
    16. Sheng-Long Hu & Zheng-Hai Huang, 2012. "Theorems of the Alternative for Inequality Systems of Real Polynomials," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 1-16, July.
    17. Wenbao Ai & Yongwei Huang & Shuzhong Zhang, 2008. "On the Low Rank Solutions for Linear Matrix Inequalities," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 965-975, November.
    18. Yu, Pengfei & Gao, Ruotian & Xing, Wenxun, 2021. "Maximizing perturbation radii for robust convex quadratically constrained quadratic programs," European Journal of Operational Research, Elsevier, vol. 293(1), pages 50-64.
    19. Carmo Brás & Gabriele Eichfelder & Joaquim Júdice, 2016. "Copositivity tests based on the linear complementarity problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 461-493, March.
    20. Bo Zhang & YueLin Gao & Xia Liu & XiaoLi Huang, 2023. "Outcome-space branch-and-bound outer approximation algorithm for a class of non-convex quadratic programming problems," Journal of Global Optimization, Springer, vol. 86(1), pages 61-92, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:66:y:2017:i:1:d:10.1007_s10589-016-9855-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.