IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v74y2006i6p1637-1673.html
   My bibliography  Save this article

Measuring the Implications of Sales and Consumer Inventory Behavior

Author

Listed:
  • Igal Hendel
  • Aviv Nevo

Abstract

Temporary price reductions (sales) are common for many goods and naturally result in large increases in the quantity sold. Demand estimation based on temporary price reductions may mismeasure the long-run responsiveness to prices. In this paper we quantify the extent of the problem and assess its economic implications. We structurally estimate a dynamic model of consumer choice using two years of scanner data on the purchasing behavior of a panel of households. The results suggest that static demand estimates, which neglect dynamics, (i) overestimate own-price elasticities by 30 percent, (ii) underestimate cross-price elasticities by up to a factor of 5, and (iii) overestimate the substitution to the no-purchase or outside option by over 200 percent. This suggests that policy analysis based on static elasticity estimates will underestimate price-cost margins and underpredict the effects of mergers. Copyright The Econometric Society 2006.

Suggested Citation

  • Igal Hendel & Aviv Nevo, 2006. "Measuring the Implications of Sales and Consumer Inventory Behavior," Econometrica, Econometric Society, vol. 74(6), pages 1637-1673, November.
  • Handle: RePEc:ecm:emetrp:v:74:y:2006:i:6:p:1637-1673
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1468-0262.2006.00721.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hugo Benitez-Silva & John Rust & Gunter Hitsch & Giorgio Pauletto & George Hall, 2000. "A Comparison Of Discrete And Parametric Methods For Continuous-State Dynamic Programming Problems," Computing in Economics and Finance 2000 24, Society for Computational Economics.
    2. Jeongwen Chiang, 1991. "A Simultaneous Approach to the Whether, What and How Much to Buy Questions," Marketing Science, INFORMS, vol. 10(4), pages 297-315.
    3. Judith A. Chevalier & Anil K. Kashyap & Peter E. Rossi, 2003. "Why Don't Prices Rise During Periods of Peak Demand? Evidence from Scanner Data," American Economic Review, American Economic Association, vol. 93(1), pages 15-37, March.
    4. Christine Boizot & Jean-Marc Robin & Michael Visser, 2001. "The demand for food products," Post-Print hal-03416605, HAL.
    5. Tülin Erdem & Susumu Imai & Michael Keane, 2003. "Brand and Quantity Choice Dynamics Under Price Uncertainty," Quantitative Marketing and Economics (QME), Springer, vol. 1(1), pages 5-64, March.
    6. Boizot, Christine & Robin, Jean-Marc & Visser, Michael, 2001. "The Demand for Food Products: An Analysis of Interpurchase Times and Purchased Quantities," Economic Journal, Royal Economic Society, vol. 111(470), pages 391-419, April.
    7. David R. Bell & Jeongwen Chiang & V. Padmanabhan, 1999. "The Decomposition of Promotional Response: An Empirical Generalization," Marketing Science, INFORMS, vol. 18(4), pages 504-526.
    8. Imran S. Currim & Linda G. Schneider, 1991. "A Taxonomy of Consumer Purchase Strategies in a Promotion Intensive Environment," Marketing Science, INFORMS, vol. 10(2), pages 91-110.
    9. Aguirregabiria, Victor, 2005. "Nonparametric identification of behavioral responses to counterfactual policy interventions in dynamic discrete decision processes," Economics Letters, Elsevier, vol. 87(3), pages 393-398, June.
    10. Victor Aguirregabiria, 1999. "The Dynamics of Markups and Inventories in Retailing Firms," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 66(2), pages 275-308.
    11. Boztuğ, Yasemin & Bell, David R., 2004. "The Effect of Inventory on Purchase Incidence: Empirical Analysis of Opposing Forces of Storage and Consumption," Papers 2004,43, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    12. Christine Boizot & Jean-Marc Robin & Michael Visser, 2001. "The demand for food products," Post-Print hal-03416604, HAL.
    13. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igal Hendel & Aviv Nevo, 2006. "Sales and consumer inventory," RAND Journal of Economics, RAND Corporation, vol. 37(3), pages 543-561, September.
    2. Kazuko Kano, 2018. "Consumer Inventory and Demand for Storable Goods: New Evidence from a Consumer Survey," The Japanese Economic Review, Japanese Economic Association, vol. 69(3), pages 284-305, September.
    3. Kazuko Kano, 2018. "Consumer Inventory and Demand for Storable Goods: New Evidence from a Consumer Survey," The Japanese Economic Review, Springer, vol. 69(3), pages 284-305, September.
    4. Thierry Magnac & Pierre Dubois, 2016. "Consumer Demand with Unobserved Stockpiling and Intertemporal Price Discrimination," 2016 Meeting Papers 451, Society for Economic Dynamics.
    5. Aguirregabiria, Victor & Nevo, Aviv, 2010. "Recent developments in empirical IO: dynamic demand and dynamic games," MPRA Paper 27814, University Library of Munich, Germany.
    6. Victor Aguirregabiria, 2023. "Dynamic demand for differentiated products with fixed-effects unobserved heterogeneity," The Econometrics Journal, Royal Economic Society, vol. 26(1), pages 1-25.
    7. Igal Hendel & Aviv Nevo, 2013. "Intertemporal Price Discrimination in Storable Goods Markets," American Economic Review, American Economic Association, vol. 103(7), pages 2722-2751, December.
    8. Baker, Scott R. & Johnson, Stephanie & Kueng, Lorenz, 2024. "Financial returns to household inventory management," Journal of Financial Economics, Elsevier, vol. 151(C).
    9. Kozo Ueda & Kota Watanabe & Tsutomu Watanabe, 2021. "Household Inventory, Temporary Sales, and Price Indices," CARF F-Series CARF-F-520, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    10. Garrod Luke & Li Ruochen & Wilson Chris M., 2019. "Transaction Costs as a Source of Consumer Stockpiling," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 19(3), pages 1-15, July.
    11. Jean-Pierre H. Dubé, 2018. "Microeconometric Models of Consumer Demand," NBER Working Papers 25215, National Bureau of Economic Research, Inc.
    12. Javier D. Donna, 2021. "Measuring long‐run gasoline price elasticities in urban travel demand," RAND Journal of Economics, RAND Corporation, vol. 52(4), pages 945-994, December.
    13. Donna, Javier D., 2018. "Measuring Long-Run Price Elasticities in Urban Travel Demand," MPRA Paper 90059, University Library of Munich, Germany.
    14. Harikesh Nair & Jean-Pierre Dubé & Pradeep Chintagunta, 2005. "Accounting for Primary and Secondary Demand Effects with Aggregate Data," Marketing Science, INFORMS, vol. 24(3), pages 444-460, November.
    15. Février, Philippe & Wilner, Lionel, 2016. "Do consumers correctly expect price reductions? Testing dynamic behavior," International Journal of Industrial Organization, Elsevier, vol. 44(C), pages 25-40.
    16. Kozo Ueda & Kota Watanabe & Tsutomu Watanabe, 2020. "Consumer Inventory and the Cost of Living Index: Theory and Some Evidence from Japan," Working Papers on Central Bank Communication 025, University of Tokyo, Graduate School of Economics.
    17. Ruochen Li, 2021. "Consumer stockpiling and demand elasticity biases: A theoretical note with applications," Manchester School, University of Manchester, vol. 89(6), pages 610-618, December.
    18. Tiago Pires, 2016. "Costly search and consideration sets in storable goods markets," Quantitative Marketing and Economics (QME), Springer, vol. 14(3), pages 157-193, September.
    19. Jakina Debnam, 2017. "Selection Effects and Heterogeneous Demand Responses to the Berkeley Soda Tax Vote," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(5), pages 1172-1187.
    20. Celine Bonnet & Pierre Dubois & Sofia B. Villas Boas & Daniel Klapper, 2013. "Empirical Evidence on the Role of Nonlinear Wholesale Pricing and Vertical Restraints on Cost Pass-Through," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 500-515, May.

    More about this item

    JEL classification:

    • G0 - Financial Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:74:y:2006:i:6:p:1637-1673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.