Spatial risk assessment for extreme river flows
Author
Abstract
Suggested Citation
DOI: 10.1111/j.1467-9876.2009.00672.x
Download full text from publisher
References listed on IDEAS
- Janet E. Heffernan & Jonathan A. Tawn, 2004. "A conditional approach for multivariate extreme values (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 497-546, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Keef, Caroline & Papastathopoulos, Ioannis & Tawn, Jonathan A., 2013. "Estimation of the conditional distribution of a multivariate variable given that one of its components is large: Additional constraints for the Heffernan and Tawn model," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 396-404.
- Ross Towe & Jonathan Tawn & Emma Eastoe & Rob Lamb, 2020. "Modelling the Clustering of Extreme Events for Short-Term Risk Assessment," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 32-53, March.
- Marmai, Nadin & Franco Villoria, Maria & Guerzoni, Marco, 2016.
"How the Black Swan damages the harvest: statistical modelling of extreme events in weather and crop production in Africa, Asia, and Latin America,"
Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio
201605, University of Turin.
- Marmai, Nadin & Franco Villoria, Maria & Guerzoni, Marco, 2016. "How the Black Swan damages the harvest: statistical modelling of extreme events in weather and crop production in Africa, Asia, and Latin America," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201608, University of Turin.
- Marmai, Nadine, 2016. "Farmers’ investments in innovative technologies in times of precipitation extremes: A statistical analysis for rural Tanzania," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201617, University of Turin.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Refk Selmi & Christos Kollias & Stephanos Papadamou & Rangan Gupta, 2017. "A Copula-Based Quantile-on-Quantile Regression Approach to Modeling Dependence Structure between Stock and Bond Returns: Evidence from Historical Data of India, South Africa, UK and US," Working Papers 201747, University of Pretoria, Department of Economics.
- Anne‐Laure Fougères & John P. Nolan & Holger Rootzén, 2009. "Models for Dependent Extremes Using Stable Mixtures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 42-59, March.
- Alexandra Ramos & Anthony Ledford, 2009. "A new class of models for bivariate joint tails," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 219-241, January.
- Lee Fawcett & David Walshaw, 2014. "Estimating the probability of simultaneous rainfall extremes within a region: a spatial approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(5), pages 959-976, May.
- Barme-Delcroix, Marie-Francoise & Gather, Ursula, 2007. "Limit laws for multidimensional extremes," Statistics & Probability Letters, Elsevier, vol. 77(18), pages 1750-1755, December.
- Kresning, Boma & Hashemi, M. Reza & Shirvani, Amin & Hashemi, Javad, 2024. "Uncertainty of extreme wind and wave loads for marine renewable energy farms in hurricane-prone regions," Renewable Energy, Elsevier, vol. 220(C).
- Marmai, Nadin & Franco Villoria, Maria & Guerzoni, Marco, 2016.
"How the Black Swan damages the harvest: statistical modelling of extreme events in weather and crop production in Africa, Asia, and Latin America,"
Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio
201605, University of Turin.
- Marmai, Nadin & Franco Villoria, Maria & Guerzoni, Marco, 2016. "How the Black Swan damages the harvest: statistical modelling of extreme events in weather and crop production in Africa, Asia, and Latin America," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201608, University of Turin.
- Daniela Castro Camilo & Miguel de Carvalho & Jennifer Wadsworth, 2017. "Time-Varying Extreme Value Dependence with Application to Leading European Stock Markets," Papers 1709.01198, arXiv.org.
- Balakrishnan, N. & Hashorva, E., 2011. "On Pearson-Kotz Dirichlet distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 948-957, May.
- de Valk, Cees, 2016. "A large deviations approach to the statistics of extreme events," Other publications TiSEM 117b3ba0-0e40-4277-b25e-d, Tilburg University, School of Economics and Management.
- Panagiota Galiatsatou & Christos Makris & Panayotis Prinos & Dimitrios Kokkinos, 2019. "Nonstationary joint probability analysis of extreme marine variables to assess design water levels at the shoreline in a changing climate," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(3), pages 1051-1089, September.
- Hentschel, Manuel & Engelke, Sebastian & Segers, Johan, 2022. "Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions," LIDAM Discussion Papers ISBA 2022032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- B. Winter & K. Schneeberger & M. Huttenlau & J. Stötter, 2018. "Sources of uncertainty in a probabilistic flood risk model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 431-446, March.
- Déborah Idier & Jérémy Rohmer & Rodrigo Pedreros & Sylvestre Roy & Jérome Lambert & Jessie Louisor & Gonéri Cozannet & Erwan Cornec, 2020. "Coastal flood: a composite method for past events characterisation providing insights in past, present and future hazards—joining historical, statistical and modelling approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 465-501, March.
- Richards, Jordan & Tawn, Jonathan A., 2022. "On the tail behaviour of aggregated random variables," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Kereszturi, Mónika & Tawn, Jonathan, 2017. "Properties of extremal dependence models built on bivariate max-linearity," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 52-71.
- Simpson, Emma S. & Wadsworth, Jennifer L. & Tawn, Jonathan A., 2021. "A geometric investigation into the tail dependence of vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
- Guus Balkema & Paul Embrechts, 2018. "Linear Regression for Heavy Tails," Risks, MDPI, vol. 6(3), pages 1-70, September.
- Falk, Michael & Padoan, Simone A. & Wisheckel, Florian, 2019. "Generalized Pareto copulas: A key to multivariate extremes," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
- Sabourin, Anne & Naveau, Philippe, 2014. "Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 542-567.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:58:y:2009:i:5:p:601-618. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.