IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v35y2020i3d10.1007_s00180-019-00947-2.html
   My bibliography  Save this article

Modelling dependency effect to extreme value distributions with application to extreme wind speed at Port Elizabeth, South Africa: a frequentist and Bayesian approaches

Author

Listed:
  • Tadele Akeba Diriba

    (University of South Africa)

  • Legesse Kassa Debusho

    (University of South Africa)

Abstract

The dependency effect to extreme value distributions (EVDs) using the frequentist and Bayesian approaches have been used to analyse the extremes of annual and daily maximum wind speed at Port Elizabeth, South Africa. In the frequentist approach, the parameters of EVDs were estimated using maximum likelihood, whereas in the Bayesian approach the Markov Chain Monte Carlo technique with the Metropolis–Hastings algorithm was used. The results show that the EVDs fitted considering the dependency and seasonality effects with in the data series provide apparent benefits in terms of improved precision in estimation of the parameters as well as return levels of the distributions. The paper also discusses a method to construct informative priors empirically using historical data of the underlying process from other weather stations. The results from the Bayesian analysis show that posterior inference might be affected by the choice of priors used to formulate the informative priors. The Bayesian approach provides satisfactory estimation strategy in terms of precision compared to the frequentist approach, accounting for uncertainty in parameters and return levels estimation.

Suggested Citation

  • Tadele Akeba Diriba & Legesse Kassa Debusho, 2020. "Modelling dependency effect to extreme value distributions with application to extreme wind speed at Port Elizabeth, South Africa: a frequentist and Bayesian approaches," Computational Statistics, Springer, vol. 35(3), pages 1449-1479, September.
  • Handle: RePEc:spr:compst:v:35:y:2020:i:3:d:10.1007_s00180-019-00947-2
    DOI: 10.1007/s00180-019-00947-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-019-00947-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-019-00947-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stuart G. Coles & Jonathan A. Tawn, 1996. "A Bayesian Analysis of Extreme Rainfall Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(4), pages 463-478, December.
    2. Phillip Kearns & Adrian Pagan, 1997. "Estimating The Density Tail Index For Financial Time Series," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 171-175, May.
    3. Lee Fawcett & David Walshaw, 2006. "A hierarchical model for extreme wind speeds," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(5), pages 631-646, November.
    4. Christopher A. T. Ferro & Johan Segers, 2003. "Inference for clusters of extreme values," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 545-556, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Maposa & Anna M. Seimela & Caston Sigauke & James J. Cochran, 2021. "Modelling temperature extremes in the Limpopo province: bivariate time-varying threshold excess approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2227-2246, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    2. John G. Galbraith & Serguei Zernov, 2006. "Extreme Dependence In The Nasdaq And S&P Composite Indexes," Departmental Working Papers 2006-14, McGill University, Department of Economics.
    3. Ross Towe & Jonathan Tawn & Emma Eastoe & Rob Lamb, 2020. "Modelling the Clustering of Extreme Events for Short-Term Risk Assessment," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 32-53, March.
    4. G. D. Gettinby & C. D. Sinclair & D. M. Power & R. A. Brown, 2004. "An Analysis of the Distribution of Extreme Share Returns in the UK from 1975 to 2000," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5‐6), pages 607-646, June.
    5. Bidarkota, Prasad V. & Dupoyet, Brice V. & McCulloch, J. Huston, 2009. "Asset pricing with incomplete information and fat tails," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1314-1331, June.
    6. Kyritsis, Evangelos & Serletis, Apostolos, 2018. "The zero lower bound and market spillovers: Evidence from the G7 and Norway," Research in International Business and Finance, Elsevier, vol. 44(C), pages 100-123.
    7. Wesselhöfft, Niels & Härdle, Wolfgang Karl, 2019. "Constrained Kelly portfolios under alpha-stable laws," IRTG 1792 Discussion Papers 2019-004, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    8. Hamid Mohtadi & Antu Panini Murshid, 2009. "Risk of catastrophic terrorism: an extreme value approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 537-559.
    9. Jose A. Lopez, 1999. "Methods for evaluating value-at-risk estimates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
    10. Wang, Bing Xing & Yu, Keming & Coolen, Frank P.A., 2015. "Interval estimation for proportional reversed hazard family based on lower record values," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 115-122.
    11. Lee Fawcett & David Walshaw, 2014. "Estimating the probability of simultaneous rainfall extremes within a region: a spatial approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(5), pages 959-976, May.
    12. Francis X. Diebold & Til Schuermann & John D. Stroughair, 2000. "Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 1(2), pages 30-35, January.
    13. Pushpa Dissanayake & Teresa Flock & Johanna Meier & Philipp Sibbertsen, 2021. "Modelling Short- and Long-Term Dependencies of Clustered High-Threshold Exceedances in Significant Wave Heights," Mathematics, MDPI, vol. 9(21), pages 1-33, November.
    14. Cotter, John, 2007. "Varying the VaR for unconditional and conditional environments," Journal of International Money and Finance, Elsevier, vol. 26(8), pages 1338-1354, December.
    15. Hongxiang Yan & Hamid Moradkhani, 2016. "Toward more robust extreme flood prediction by Bayesian hierarchical and multimodeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 203-225, March.
    16. Bee, Marco & Dupuis, Debbie J. & Trapin, Luca, 2016. "Realizing the extremes: Estimation of tail-risk measures from a high-frequency perspective," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 86-99.
    17. Batten, Jonathan & Ellis, Craig & Fetherston, Thomas A., 2000. "Are long-term return anomalies illusions?: Evidence from the spot Yen," Japan and the World Economy, Elsevier, vol. 12(4), pages 337-349, December.
    18. Cheng-Few Lee & Jung-Bin Su, 2012. "Alternative statistical distributions for estimating value-at-risk: theory and evidence," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 309-331, October.
    19. Cotter, John, 2004. "Downside Risk for European Equity Markets," MPRA Paper 3537, University Library of Munich, Germany.
    20. Sara Ali Alokley & Mansour Saleh Albarrak, 2020. "Clustering of Extremes in Financial Returns: A Study of Developed and Emerging Markets," JRFM, MDPI, vol. 13(7), pages 1-11, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:35:y:2020:i:3:d:10.1007_s00180-019-00947-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.