IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2014008.html
   My bibliography  Save this paper

An M-estimator of spatial tail dependence

Author

Listed:
  • Einmahl, John
  • Kiriliouk, Anna
  • Krajina, Andrea
  • Segers, Johan

Abstract

No abstract is available for this item.

Suggested Citation

  • Einmahl, John & Kiriliouk, Anna & Krajina, Andrea & Segers, Johan, 2014. "An M-estimator of spatial tail dependence," LIDAM Discussion Papers ISBA 2014008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2014008
    as

    Download full text from publisher

    File URL: https://alfresco.uclouvain.be/alfresco/service/guest/streamDownload/cf5285c9-9eec-4f69-9d70-a236f4e333b0/2014_08_segers_anM.pdf?guest=true
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Abadir,Karim M. & Magnus,Jan R., 2005. "Matrix Algebra," Cambridge Books, Cambridge University Press, number 9780521537469, September.
    2. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    3. Einmahl, J.H.J. & Krajina, A. & Segers, J.J.J., 2007. "A Method of Moments Estimator of Tail Dependence," Discussion Paper 2007-80, Tilburg University, Center for Economic Research.
    4. Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Discussion Paper 2011-013, Tilburg University, Center for Economic Research.
    5. R. Huser & A. C. Davison, 2014. "Space–time modelling of extreme events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 439-461, March.
    6. repec:cup:cbooks:9780521822893 is not listed on IDEAS
    7. Richard A. Davis & Claudia Klüppelberg & Christina Steinkohl, 2013. "Statistical inference for max-stable processes in space and time," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 791-819, November.
    8. R. Huser & A. C. Davison, 2013. "Composite likelihood estimation for the Brown--Resnick process," Biometrika, Biometrika Trust, vol. 100(2), pages 511-518.
    9. Jennifer L. Wadsworth & Jonathan A. Tawn, 2014. "Efficient inference for spatial extreme value processes associated to log-Gaussian random functions," Biometrika, Biometrika Trust, vol. 101(1), pages 1-15.
    10. Padoan, S. A. & Ribatet, M. & Sisson, S. A., 2010. "Likelihood-Based Inference for Max-Stable Processes," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 263-277.
    11. Drees, Holger & Huang, Xin, 1998. "Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function," Journal of Multivariate Analysis, Elsevier, vol. 64(1), pages 25-47, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Shuang & Peng, Zuoxiang & Segers, Johan, 2022. "Modelling multivariate extreme value distributions via Markov trees," LIDAM Discussion Papers ISBA 2022021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Miranda J. Fix & Daniel S. Cooley & Emeric Thibaud, 2021. "Simultaneous autoregressive models for spatial extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 32(2), March.
    3. Einmahl, John & Kiriliouk, Anna & Segers, Johan, 2016. "A continuous updating weighted least squares estimator of tail dependence in high dimensions," LIDAM Discussion Papers ISBA 2016002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation In Extreme Value Regression Models Of Hedge Fund Tail Risks," Working Papers hal-04090916, HAL.
    5. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    6. Klüppelberg, Claudia & Krali, Mario, 2021. "Estimating an extreme Bayesian network via scalings," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    7. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation in Extreme Value Regression Models of Hedge Fund Tail Risks," Papers 2304.06950, arXiv.org.
    8. Kiriliouk, Anna, 2017. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space with application to generalized max-linear models," LIDAM Discussion Papers ISBA 2017027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Hentschel, Manuel & Engelke, Sebastian & Segers, Johan, 2022. "Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions," LIDAM Discussion Papers ISBA 2022032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
    11. Rootzen, Holger & Segers, Johan & Wadsworth, Jenny, 2016. "Multivariate peaks over thresholds models," LIDAM Discussion Papers ISBA 2016018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Robert, Christian Y., 2022. "Testing for changes in the tail behavior of Brown–Resnick Pareto processes," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 312-368.
    13. Kiriliouk, Anna & Segers, Johan & Warchol, Michal, 2014. "Nonparametric estimation of extremal dependence," LIDAM Discussion Papers ISBA 2014044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Einmahl, John & Kiriliouk, Anna & Segers, Johan, 2016. "A continuous updating weighted least squares estimator of tail dependence in high dimensions," LIDAM Discussion Papers ISBA 2016002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
    3. Wang, Yixin & So, Mike K.P., 2016. "A Bayesian hierarchical model for spatial extremes with multiple durations," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 39-56.
    4. Zhong, Peng & Huser, Raphaël & Opitz, Thomas, 2024. "Exact Simulation of Max-Infinitely Divisible Processes," Econometrics and Statistics, Elsevier, vol. 30(C), pages 96-109.
    5. Samuel A. Morris & Brian J. Reich & Emeric Thibaud, 2019. "Exploration and Inference in Spatial Extremes Using Empirical Basis Functions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 555-572, December.
    6. Bücher Axel, 2014. "A note on nonparametric estimation of bivariate tail dependence," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 151-162, June.
    7. A. Abu-Awwad & V. Maume-Deschamps & P. Ribereau, 2021. "Semiparametric estimation for space-time max-stable processes: an F-madogram-based approach," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 241-276, July.
    8. Hentschel, Manuel & Engelke, Sebastian & Segers, Johan, 2022. "Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions," LIDAM Discussion Papers ISBA 2022032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Raphaël Huser & Marc G. Genton, 2016. "Non-Stationary Dependence Structures for Spatial Extremes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 470-491, September.
    10. Hu, Shuang & Peng, Zuoxiang & Segers, Johan, 2022. "Modelling multivariate extreme value distributions via Markov trees," LIDAM Discussion Papers ISBA 2022021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Alexis Bienvenüe & Christian Y. Robert, 2017. "Likelihood Inference for Multivariate Extreme Value Distributions Whose Spectral Vectors have known Conditional Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 130-149, March.
    12. Krajina, A., 2010. "An M-estimator of multivariate tail dependence," Other publications TiSEM 66518e07-db9a-4446-81be-c, Tilburg University, School of Economics and Management.
    13. Samuel A. Morris & Brian J. Reich & Emeric Thibaud & Daniel Cooley, 2017. "A space-time skew-t model for threshold exceedances," Biometrics, The International Biometric Society, vol. 73(3), pages 749-758, September.
    14. Carsten Bormann & Julia Schaumburg & Melanie Schienle, 2016. "Beyond Dimension two: A Test for Higher-Order Tail Risk," Journal of Financial Econometrics, Oxford University Press, vol. 14(3), pages 552-580.
    15. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    16. Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Discussion Paper 2011-013, Tilburg University, Center for Economic Research.
    17. Gissibl, Nadine & Klüppelberg, Claudia & Otto, Moritz, 2018. "Tail dependence of recursive max-linear models with regularly varying noise variables," Econometrics and Statistics, Elsevier, vol. 6(C), pages 149-167.
    18. Einmahl, J.H.J. & Segers, J.J.J., 2008. "Maximum Empirical Likelihood Estimation of the Spectral Measure of an Extreme Value Distribution," Other publications TiSEM e9340b9a-fe69-4e77-8594-8, Tilburg University, School of Economics and Management.
    19. Rootzen, Holger & Segers, Johan & Wadsworth, Jenny, 2016. "Multivariate peaks over thresholds models," LIDAM Discussion Papers ISBA 2016018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Koch, Erwan & Robert, Christian Y., 2019. "Geometric ergodicity for some space–time max-stable Markov chains," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 43-49.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2014008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.