IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v16y2020icp121-135.html
   My bibliography  Save this article

Hypothesis testing for tail dependence parameters on the boundary of the parameter space

Author

Listed:
  • Kiriliouk, Anna

Abstract

Modelling multivariate tail dependence is one of the key challenges in extreme-value theory. Multivariate extremes are usually characterized using parametric models, some of which have simpler submodels at the boundary of their parameter space. Hypothesis tests are proposed for tail dependence parameters that, under the null hypothesis, are on the boundary of the alternative hypothesis. The asymptotic distribution of the weighted least squares estimator is given when the true parameter vector is on the boundary of the parameter space, and two test statistics are proposed. The performance of these test statistics is evaluated for the Brown–Resnick model and the max-linear model. In particular, simulations show that it is possible to recover the optimal number of factors for a max-linear model. Finally, the methods are applied to characterize the dependence structure of two major stock market indices, the DAX and the CAC40.

Suggested Citation

  • Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
  • Handle: RePEc:eee:ecosta:v:16:y:2020:i:c:p:121-135
    DOI: 10.1016/j.ecosta.2019.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306219300425
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2019.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Segers, Johan & Sibuya, Masaaki & Tsukahara, Hideatsu, 2017. "The empirical beta copula," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 35-51.
    2. Segers, Johan, 2012. "Max-stable models for multivariate extremes," LIDAM Reprints ISBA 2012012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Other publications TiSEM 27508aa0-9825-4d9e-b1f4-1, Tilburg University, School of Economics and Management.
    4. Einmahl, John & Kiriliouk, Anna & Segers, Johan, 2016. "A continuous updating weighted least squares estimator of tail dependence in high dimensions," LIDAM Discussion Papers ISBA 2016002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Einmahl, John H. J. & Magnus, Jan R., 2008. "Records in Athletics Through Extreme-Value Theory," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1382-1391.
    6. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    7. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    8. Berghaus, Betina & Segers, Johan, 2017. "Weak convergence of the weighted empirical beta copula process," LIDAM Discussion Papers ISBA 2017015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2017. "Multivariate nonparametric estimation of the Pickands dependence function using Bernstein polynomials," LIDAM Reprints ISBA 2017003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. John H. J. Einmahl & Anna Kiriliouk & Andrea Krajina & Johan Segers, 2016. "An M-estimator of spatial tail dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 275-298, January.
    11. Zifeng Zhao & Zhengjun Zhang, 2018. "Semiparametric dynamic max‐copula model for multivariate time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 409-432, March.
    12. Zhang, Dabao & Wells, Martin T. & Peng, Liang, 2008. "Nonparametric estimation of the dependence function for a multivariate extreme value distribution," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 577-588, April.
    13. Kiriliouk, Anna & Rootzen, Holger & Segers, Johan & Wadsworth, Jennifer L., 2018. "Peaks over thresholds modelling with multivariate generalized Pareto distributions," LIDAM Reprints ISBA 2018015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Drees, Holger & Huang, Xin, 1998. "Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function," Journal of Multivariate Analysis, Elsevier, vol. 64(1), pages 25-47, January.
    15. Guillou, Armelle & Padoan, Simone A. & Rizzelli, Stefano, 2018. "Inference for asymptotically independent samples of extremes," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 114-135.
    16. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2018. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2018029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Segers, Johan, 2012. "Max-Stable Models For Multivariate Extremes," LIDAM Discussion Papers ISBA 2012011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    19. Valérie Chavez-Demoulin & Paul Embrechts & Marius Hofert, 2016. "An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 735-776, September.
    20. Maud Thomas & Magali Lemaitre & Mark L Wilson & Cécile Viboud & Youri Yordanov & Hans Wackernagel & Fabrice Carrat, 2016. "Applications of Extreme Value Theory in Public Health," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-7, July.
    21. Segers, Johan & Sibuya, Masaaki & Tsukahara, Hideatsu, 2017. "The empirical beta copula," LIDAM Reprints ISBA 2017005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    22. Gissibl, Nadine & Klüppelberg, Claudia & Otto, Moritz, 2018. "Tail dependence of recursive max-linear models with regularly varying noise variables," Econometrics and Statistics, Elsevier, vol. 6(C), pages 149-167.
    23. Andrews, Donald W K, 2002. "Generalized Method of Moments Estimation When a Parameter Is on a Boundary," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 530-544, October.
    24. Su, Jianxi & Furman, Edward, 2017. "Multiple risk factor dependence structures: Distributional properties," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 56-68.
    25. Beirlant, Jan & Escobar-Bach, Mikael & Goegebeur, Yuri & Guillou, Armelle, 2016. "Bias-corrected estimation of stable tail dependence function," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 453-466.
    26. Qiurong Cui & Zhengjun Zhang, 2018. "Max-Linear Competing Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 62-74, January.
    27. Gudendorf, Gordon & Segers, Johan, 2012. "Nonparametric estimation of multivariate extreme-value copulas," LIDAM Reprints ISBA 2012011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    28. Jennifer L. Wadsworth & Jonathan A. Tawn, 2014. "Efficient inference for spatial extreme value processes associated to log-Gaussian random functions," Biometrika, Biometrika Trust, vol. 101(1), pages 1-15.
    29. Padoan, S. A. & Ribatet, M. & Sisson, S. A., 2010. "Likelihood-Based Inference for Max-Stable Processes," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 263-277.
    30. Su, Jianxi & Furman, Edward, 2017. "Multiple risk factor dependence structures: Copulas and related properties," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 109-121.
    31. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2018. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Reprints ISBA 2018033, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    32. Anne‐Laure Fougères & John P. Nolan & Holger Rootzén, 2009. "Models for Dependent Extremes Using Stable Mixtures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 42-59, March.
    33. Damiano Brigo & Jan-Frederik Mai & Matthias Scherer & Henrik Sloot, 2018. "Consistent Iterated Simulation of Multivariate Defaults: Markov Indicators, Lack of Memory, Extreme-Value Copulas, and the Marshall–Olkin Distribution," World Scientific Book Chapters, in: Kathrin Glau & Daniël Linders & Aleksey Min & Matthias Scherer & Lorenz Schneider & Rudi Zagst (ed.), Innovations in Insurance, Risk- and Asset Management, chapter 3, pages 47-93, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiriliouk, Anna, 2017. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space with application to generalized max-linear models," LIDAM Discussion Papers ISBA 2017027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Hu, Shuang & Peng, Zuoxiang & Segers, Johan, 2022. "Modelling multivariate extreme value distributions via Markov trees," LIDAM Discussion Papers ISBA 2022021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Hentschel, Manuel & Engelke, Sebastian & Segers, Johan, 2022. "Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions," LIDAM Discussion Papers ISBA 2022032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2018. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2018029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2017. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2017028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Asenova, Stefka Kirilova & Mazo, Gildas & Segers, Johan, 2020. "Inference on extremal dependence in a latent Markov tree model attracted to a Husler-Reiss distribution," LIDAM Discussion Papers ISBA 2020005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Kiriliouk, Anna & Segers, Johan & Warchol, Michal, 2014. "Nonparametric estimation of extremal dependence," LIDAM Discussion Papers ISBA 2014044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Gissibl, Nadine & Klüppelberg, Claudia & Otto, Moritz, 2018. "Tail dependence of recursive max-linear models with regularly varying noise variables," Econometrics and Statistics, Elsevier, vol. 6(C), pages 149-167.
    9. Enkelejd Hashorva & Simone A. Padoan & Stefano Rizzelli, 2021. "Multivariate extremes over a random number of observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 845-880, September.
    10. John H. J. Einmahl & Anna Kiriliouk & Andrea Krajina & Johan Segers, 2016. "An M-estimator of spatial tail dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 275-298, January.
    11. Mhalla, Linda & Chavez-Demoulin, Valérie & Naveau, Philippe, 2017. "Non-linear models for extremal dependence," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 49-66.
    12. Einmahl, John & Kiriliouk, Anna & Segers, Johan, 2016. "A continuous updating weighted least squares estimator of tail dependence in high dimensions," LIDAM Discussion Papers ISBA 2016002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Rootzen, Holger & Segers, Johan & Wadsworth, Jennifer, 2017. "Multivariate generalized Pareto distributions: parametrizations, representations, and properties," LIDAM Discussion Papers ISBA 2017016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Klüppelberg, Claudia & Krali, Mario, 2021. "Estimating an extreme Bayesian network via scalings," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    15. Ahmed, Hanan, 2022. "Extreme value statistics using related variables," Other publications TiSEM 246f0f13-701c-4c0d-8e09-e, Tilburg University, School of Economics and Management.
    16. Samuel A. Morris & Brian J. Reich & Emeric Thibaud, 2019. "Exploration and Inference in Spatial Extremes Using Empirical Basis Functions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 555-572, December.
    17. Bücher, Axel & Jäschke, Stefan & Wied, Dominik, 2015. "Nonparametric tests for constant tail dependence with an application to energy and finance," Journal of Econometrics, Elsevier, vol. 187(1), pages 154-168.
    18. Goix, Nicolas & Sabourin, Anne & Clémençon, Stephan, 2017. "Sparse representation of multivariate extremes with applications to anomaly detection," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 12-31.
    19. Rootzén, Holger & Segers, Johan & Wadsworth, Jennifer L., 2018. "Multivariate generalized Pareto distributions: Parametrizations, representations, and properties," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 117-131.
    20. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:16:y:2020:i:c:p:121-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.