IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/65331.html
   My bibliography  Save this paper

Central limit theorems for long range dependent spatial linear processes

Author

Listed:
  • Lahiri, S.N.
  • Robinson, Peter M.

Abstract

Central limit theorems are established for the sum, over a spatial region, of observations from a linear process on a d d-dimensional lattice. This region need not be rectangular, but can be irregularly-shaped. Separate results are established for the cases of positive strong dependence, short range dependence, and negative dependence. We provide approximations to asymptotic variances that reveal differential rates of convergence under the three types of dependence. Further, in contrast to the one dimensional (i.e., the time series) case, it is shown that the form of the asymptotic variance in dimensions d > 1 critically depends on the geometry of the sampling region under positive strong dependence and under negative dependence and that there can be non-trivial edge-effects under negative dependence for d > 1. Precise conditions for the presence of edge effects are also given.

Suggested Citation

  • Lahiri, S.N. & Robinson, Peter M., 2016. "Central limit theorems for long range dependent spatial linear processes," LSE Research Online Documents on Economics 65331, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:65331
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/65331/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frédéric Lavancier, 2007. "Invariance principles for non-isotropic long memory random fields," Statistical Inference for Stochastic Processes, Springer, vol. 10(3), pages 255-282, October.
    2. Paul Doukhan & Patrice Bertail & Philippe Soulier, 2006. "Dependence in Probability and Statistics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00268232, HAL.
    3. Paul Doukhan & Patrice Bertail & Philippe Soulier, 2006. "Dependence in Probability and Statistics," Post-Print hal-00268232, HAL.
    4. El Machkouri, Mohamed & Volný, Dalibor & Wu, Wei Biao, 2013. "A central limit theorem for stationary random fields," Stochastic Processes and their Applications, Elsevier, vol. 123(1), pages 1-14.
    5. Beran, Jan & Ghosh, Sucharita & Schell, Dieter, 2009. "On least squares estimation for long-memory lattice processes," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2178-2194, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Pollmann, 2020. "Causal Inference for Spatial Treatments," Papers 2011.00373, arXiv.org, revised Jan 2023.
    2. Ulrich K. Müller & Mark W. Watson, 2021. "Spatial Correlation Robust Inference," Working Papers 2021-61, Princeton University. Economics Department..
    3. Surgailis, Donatas, 2020. "Scaling transition and edge effects for negatively dependent linear random fields on Z2," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7518-7546.
    4. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2017. "Scaling transition for nonlinear random fields with long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2751-2779.
    5. Zhang, Rongmao & Chan, Ngai Hang & Chi, Changxiong, 2023. "Nonparametric testing for the specification of spatial trend functions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    6. Robinson, Peter, 2019. "Spatial long memory," LSE Research Online Documents on Economics 102182, London School of Economics and Political Science, LSE Library.
    7. Ulrich K. Müller & Mark W. Watson, 2022. "Spatial Correlation Robust Inference," Econometrica, Econometric Society, vol. 90(6), pages 2901-2935, November.
    8. Timothy Fortune & Magda Peligrad & Hailin Sang, 2021. "A local limit theorem for linear random fields," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 696-710, September.
    9. Otto, Philipp & Sibbertsen, Philipp, 2023. "Spatial autoregressive fractionally integrated moving average model," Hannover Economic Papers (HEP) dp-712, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    10. Horváth, Lajos & Kokoszka, Piotr & Wang, Shixuan, 2020. "Testing normality of data on a multivariate grid," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    11. Surgailis, Donatas, 2024. "Scaling limits of nonlinear functions of random grain model, with application to Burgers’ equation," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
    12. Ulrich K. Muller & Mark W. Watson, 2021. "Spatial Correlation Robust Inference," Papers 2102.09353, arXiv.org.
    13. Peligrad, Magda & Sang, Hailin & Xiao, Yimin & Yang, Guangyu, 2022. "Limit theorems for linear random fields with innovations in the domain of attraction of a stable law," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 596-621.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolai Leonenko & Andriy Olenko, 2013. "Tauberian and Abelian Theorems for Long-range Dependent Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 715-742, December.
    2. Robinson, Peter, 2019. "Spatial long memory," LSE Research Online Documents on Economics 102182, London School of Economics and Political Science, LSE Library.
    3. Beran, Jan & Ghosh, Sucharita & Schell, Dieter, 2009. "On least squares estimation for long-memory lattice processes," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2178-2194, November.
    4. Klar, B. & Lindner, F. & Meintanis, S.G., 2012. "Specification tests for the error distribution in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3587-3598.
    5. Ahmed BenSaïda, 2021. "The Good and Bad Volatility: A New Class of Asymmetric Heteroskedastic Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(2), pages 540-570, April.
    6. Salaheddine El Adlouni, 2018. "Quantile regression C-vine copula model for spatial extremes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 299-317, October.
    7. Bertail, Patrice & Clemencon, Stephan, 2008. "Approximate regenerative-block bootstrap for Markov chains," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2739-2756, January.
    8. Christian FRANCQ & Jean-Michel ZAKOIAN, 2009. "Properties of the QMLE and the Weighted LSE for LARCH(q) Models," Working Papers 2009-19, Center for Research in Economics and Statistics.
    9. Stoyan V. Stoyanov & Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2019. "Pricing Derivatives In Hermite Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-27, September.
    10. Paul Doukhan & Jean-David Fermanian & Gabriel Lang, 2009. "An empirical central limit theorem with applications to copulas under weak dependence," Statistical Inference for Stochastic Processes, Springer, vol. 12(1), pages 65-87, February.
    11. Guglielmo Maria Caporale & Luis A Gil-Alana & Olaoluwa Simon Yaya, 2022. "Modeling persistence and non-linearities in the US treasury 10-year bond yields," Economics Bulletin, AccessEcon, vol. 42(3), pages 1221-1229.
    12. Brunella Bonaccorso & Giuseppe T. Aronica, 2016. "Estimating Temporal Changes in Extreme Rainfall in Sicily Region (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5651-5670, December.
    13. Thomas Chuffart, 2015. "Selection Criteria in Regime Switching Conditional Volatility Models," Econometrics, MDPI, vol. 3(2), pages 1-28, May.
    14. Anh, V.V. & Leonenko, N.N. & Sakhno, L.M., 2007. "Statistical inference using higher-order information," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 706-742, April.
    15. Erhardt, Robert J. & Smith, Richard L., 2012. "Approximate Bayesian computing for spatial extremes," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1468-1481.
    16. Iryna Dubovetska & Oleksandr Masyutka & Mikhail Moklyachuk, 2015. "Estimation Problems for Periodically Correlated Isotropic Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 41-57, March.
    17. Gürtler, Marc & Kreiss, Jens-Peter & Rauh, Ronald, 2009. "A non-stationary approach for financial returns with nonparametric heteroscedasticity," Working Papers IF31V2, Technische Universität Braunschweig, Institute of Finance.
    18. Samuel A. Morris & Brian J. Reich & Emeric Thibaud, 2019. "Exploration and Inference in Spatial Extremes Using Empirical Basis Functions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 555-572, December.
    19. Shulin Zhang & Qian M. Zhou & Huazhen Lin, 2021. "Goodness-of-fit test of copula functions for semi-parametric univariate time series models," Statistical Papers, Springer, vol. 62(4), pages 1697-1721, August.
    20. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.

    More about this item

    Keywords

    central limit theorem; edge effects; increasing domain asymptotics; long memory; negative dependence; positive dependence; sampling region; spatial lattice;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:65331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.