IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v22y2023i4d10.1007_s10700-022-09406-y.html
   My bibliography  Save this article

A robust energy management approach in two-steps ahead using deep learning BiLSTM prediction model and type-2 fuzzy decision-making controller

Author

Listed:
  • Dounia El Bourakadi

    (Sidi Mohammed Ben Abdellah University)

  • Hiba Ramadan

    (Sidi Mohammed Ben Abdellah University)

  • Ali Yahyaouy

    (Sidi Mohammed Ben Abdellah University)

  • Jaouad Boumhidi

    (Sidi Mohammed Ben Abdellah University)

Abstract

The price prediction is valuable in energy management system (EMS) because it allows making informed decisions and solving the problem of the uncertainty related to the future ignorance based only on the past knowledge. To this goal, we present in this paper a two-steps EMS in order to control the different operations of a micro-grid (MG). In the first step, we exploit the advantages of the Bidirectional Long-Short Term Memory (BiLSTM) deep learning model to predict the next daily electricity price based on time series. In the second step, we use a type-2 fuzzy logic controller to decide which energy source will exploit the excess energy produced or meet the MG need. Real data is used in this paper to test the effectiveness of the proposed EMS whose superiority is proved through the test period. The BiLSTM forecasting model better performs compared to other related algorithms designed to the electricity price prediction. In addition, the proposed decision-making process can reduce the total MG cost and protect the batteries against the deep discharge and maximum charge in order to prolong their lifespan. We expect that this work can contribute to meet the real-world needs in the management of the electrical system.

Suggested Citation

  • Dounia El Bourakadi & Hiba Ramadan & Ali Yahyaouy & Jaouad Boumhidi, 2023. "A robust energy management approach in two-steps ahead using deep learning BiLSTM prediction model and type-2 fuzzy decision-making controller," Fuzzy Optimization and Decision Making, Springer, vol. 22(4), pages 645-667, December.
  • Handle: RePEc:spr:fuzodm:v:22:y:2023:i:4:d:10.1007_s10700-022-09406-y
    DOI: 10.1007/s10700-022-09406-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-022-09406-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-022-09406-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vincenzo Loia & Stefania Tomasiello & Alfredo Vaccaro & Jinwu Gao, 2020. "Using local learning with fuzzy transform: application to short term forecasting problems," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 13-32, March.
    2. Li, Wei & Becker, Denis Mike, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Energy, Elsevier, vol. 237(C).
    3. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2016. "Day-ahead electricity price forecasting via the application of artificial neural network based models," Applied Energy, Elsevier, vol. 172(C), pages 132-151.
    4. Deveci, Muhammet & Cali, Umit & Kucuksari, Sadik & Erdogan, Nuh, 2020. "Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland," Energy, Elsevier, vol. 198(C).
    5. Kulshrestha, Anurag & Krishnaswamy, Venkataraghavan & Sharma, Mayank, 2020. "Bayesian BILSTM approach for tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 83(C).
    6. Peng, Lu & Liu, Shan & Liu, Rui & Wang, Lin, 2018. "Effective long short-term memory with differential evolution algorithm for electricity price prediction," Energy, Elsevier, vol. 162(C), pages 1301-1314.
    7. Min Yi & Wei Xie & Li Mo, 2021. "Short-Term Electricity Price Forecasting Based on BP Neural Network Optimized by SAPSO," Energies, MDPI, vol. 14(20), pages 1-17, October.
    8. Wei Li & Denis Mike Becker, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Papers 2101.05249, arXiv.org, revised Jul 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang Guo & Shangyun Deng & Weijia Zheng & An Wen & Jinfeng Du & Guangshan Huang & Ruiyang Wang, 2022. "Short-Term Electricity Price Forecasting Based on the Two-Layer VMD Decomposition Technique and SSA-LSTM," Energies, MDPI, vol. 15(22), pages 1-20, November.
    2. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    3. Meng, Anbo & Wang, Peng & Zhai, Guangsong & Zeng, Cong & Chen, Shun & Yang, Xiaoyi & Yin, Hao, 2022. "Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization," Energy, Elsevier, vol. 254(PA).
    4. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2024. "Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting," Applied Energy, Elsevier, vol. 353(PA).
    5. Ziyang Wang & Masahiro Mae & Takeshi Yamane & Masato Ajisaka & Tatsuya Nakata & Ryuji Matsuhashi, 2024. "Novel Custom Loss Functions and Metrics for Reinforced Forecasting of High and Low Day-Ahead Electricity Prices Using Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) and Ensemble Learni," Energies, MDPI, vol. 17(19), pages 1-15, September.
    6. Deniz Kenan Kılıç & Peter Nielsen & Amila Thibbotuwawa, 2024. "Intraday Electricity Price Forecasting via LSTM and Trading Strategy for the Power Market: A Case Study of the West Denmark DK1 Grid Region," Energies, MDPI, vol. 17(12), pages 1-15, June.
    7. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    8. Shi, Tao & Li, Chongyang & Zhang, Wei & Zhang, Yi, 2023. "Forecasting on metal resource spot settlement price: New evidence from the machine learning model," Resources Policy, Elsevier, vol. 81(C).
    9. Schneider, Nicolas & Strielkowski, Wadim, 2023. "Modelling the unit root properties of electricity data—A general note on time-domain applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    10. Daniel Manfre Jaimes & Manuel Zamudio López & Hamidreza Zareipour & Mike Quashie, 2023. "A Hybrid Model for Multi-Day-Ahead Electricity Price Forecasting considering Price Spikes," Forecasting, MDPI, vol. 5(3), pages 1-23, July.
    11. Yang, Haolin & Schell, Kristen R., 2022. "GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting," Energy, Elsevier, vol. 238(PC).
    12. Jiseong Noh & Hyun-Ji Park & Jong Soo Kim & Seung-June Hwang, 2020. "Gated Recurrent Unit with Genetic Algorithm for Product Demand Forecasting in Supply Chain Management," Mathematics, MDPI, vol. 8(4), pages 1-14, April.
    13. Gonçalves, Rui & Ribeiro, Vitor Miguel & Pereira, Fernando Lobo, 2023. "Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption," Energy, Elsevier, vol. 274(C).
    14. Ehsani, Behdad & Pineau, Pierre-Olivier & Charlin, Laurent, 2024. "Price forecasting in the Ontario electricity market via TriConvGRU hybrid model: Univariate vs. multivariate frameworks," Applied Energy, Elsevier, vol. 359(C).
    15. Haokun Su & Xiangang Peng & Hanyu Liu & Huan Quan & Kaitong Wu & Zhiwen Chen, 2022. "Multi-Step-Ahead Electricity Price Forecasting Based on Temporal Graph Convolutional Network," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
    16. Tovar Rosas, Mario A. & Pérez, Miguel Robles & Martínez Pérez, E. Rafael, 2022. "Itineraries for charging and discharging a BESS using energy predictions based on a CNN-LSTM neural network model in BCS, Mexico," Renewable Energy, Elsevier, vol. 188(C), pages 1141-1165.
    17. Gabrielli, Paolo & Wüthrich, Moritz & Blume, Steffen & Sansavini, Giovanni, 2022. "Data-driven modeling for long-term electricity price forecasting," Energy, Elsevier, vol. 244(PB).
    18. Sharma, Abhishek & Jain, Sachin Kumar, 2022. "A novel seasonal segmentation approach for day-ahead load forecasting," Energy, Elsevier, vol. 257(C).
    19. Kılıç Depren, Serpil & Kartal, Mustafa Tevfik & Ertuğrul, Hasan Murat & Depren, Özer, 2022. "The role of data frequency and method selection in electricity price estimation: Comparative evidence from Turkey in pre-pandemic and pandemic periods," Renewable Energy, Elsevier, vol. 186(C), pages 217-225.
    20. Meng, Anbo & Zhu, Jianbin & Yan, Baiping & Yin, Hao, 2024. "Day-ahead electricity price prediction in multi-price zones based on multi-view fusion spatio-temporal graph neural network," Applied Energy, Elsevier, vol. 369(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:22:y:2023:i:4:d:10.1007_s10700-022-09406-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.