Forecasting on metal resource spot settlement price: New evidence from the machine learning model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.resourpol.2023.103360
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liu, Kailei & Cheng, Jinhua & Yi, Jiahui, 2022. "Copper price forecasted by hybrid neural network with Bayesian Optimization and wavelet transform," Resources Policy, Elsevier, vol. 75(C).
- Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2020. "A random walk through the trees: Forecasting copper prices using decision learning methods," Resources Policy, Elsevier, vol. 69(C).
- Ali, Fahad & Jiang, Yuexiang & Sensoy, Ahmet, 2021. "Downside risk in Dow Jones Islamic equity indices: Precious metals and portfolio diversification before and after the COVID-19 bear market," Research in International Business and Finance, Elsevier, vol. 58(C).
- Rubaszek, Michał & Karolak, Zuzanna & Kwas, Marek, 2020. "Mean-reversion, non-linearities and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 65(C).
- Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
- Deng, Ming, 2022. "China economic performance and natural resources commodity prices volatility: Evidence from China in COVID-19," Resources Policy, Elsevier, vol. 75(C).
- David Bourghelle & Fredj Jawadi & Philippe Rozin, 2021.
"Oil price volatility in the context of Covid-19,"
International Economics, CEPII research center, issue 167, pages 39-49.
- Bourghelle, David & Jawadi, Fredj & Rozin, Philippe, 2021. "Oil price volatility in the context of Covid-19," International Economics, Elsevier, vol. 167(C), pages 39-49.
- David Bourghelle & Fredj Jawadi & Philippe Rozin, 2021. "Oil price volatility in the context of Covid-19 [Le prix du pétrole dans le contexte du Covid 19]," Post-Print hal-04412020, HAL.
- van Eyden, Reneé & Difeto, Mamothoana & Gupta, Rangan & Wohar, Mark E., 2019. "Oil price volatility and economic growth: Evidence from advanced economies using more than a century’s data," Applied Energy, Elsevier, vol. 233, pages 612-621.
- Lehna, Malte & Scheller, Fabian & Herwartz, Helmut, 2022. "Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account," Energy Economics, Elsevier, vol. 106(C).
- Li, Wei & Becker, Denis Mike, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Energy, Elsevier, vol. 237(C).
- Madziwa, Lawrence & Pillalamarry, Mallikarjun & Chatterjee, Snehamoy, 2022. "Gold price forecasting using multivariate stochastic model," Resources Policy, Elsevier, vol. 76(C).
- Maheu, John M. & Song, Yong & Yang, Qiao, 2020.
"Oil price shocks and economic growth: The volatility link,"
International Journal of Forecasting, Elsevier, vol. 36(2), pages 570-587.
- John M. Maheu & Yong Song & Qiao Yang, 2018. "Oil Price Shocks and Economic Growth: The Volatility Link," Working Paper series 18-03, Rimini Centre for Economic Analysis.
- Maheu, John M & Yang, Qiao & Song, Yong, 2018. "Oil Price Shocks and Economic Growth: The Volatility Link," MPRA Paper 83779, University Library of Munich, Germany.
- Maheu, John M & Song, Yong & Yang, Qiao, 2018. "Oil Price Shocks and Economic Growth: The Volatility Link," MPRA Paper 83999, University Library of Munich, Germany.
- Liu, Jiaguo & Li, Sujuan & Ji, Qiang, 2021. "Regional differences and driving factors analysis of carbon emission intensity from transport sector in China," Energy, Elsevier, vol. 224(C).
- Hu, Min & Zhang, Dayong & Ji, Qiang & Wei, Lijian, 2020. "Macro factors and the realized volatility of commodities: A dynamic network analysis," Resources Policy, Elsevier, vol. 68(C).
- Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Pradhan, Biswajeet & Mai, Ngoc-Luan & Vu, Diep-Anh, 2021. "Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms," Resources Policy, Elsevier, vol. 73(C).
- Wang, Bin & Wang, Jun, 2020. "Energy futures and spots prices forecasting by hybrid SW-GRU with EMD and error evaluation," Energy Economics, Elsevier, vol. 90(C).
- Zhang, Pinyi & Ci, Bicong, 2020. "Deep belief network for gold price forecasting," Resources Policy, Elsevier, vol. 69(C).
- Tapia, Carlos & Coulton, Jeff & Saydam, Serkan, 2020. "Using entropy to assess dynamic behaviour of long-term copper price," Resources Policy, Elsevier, vol. 66(C).
- Zhang, Kefei & Cao, Hua & Thé, Jesse & Yu, Hesheng, 2022. "A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms," Applied Energy, Elsevier, vol. 306(PA).
- Shi, Tao & Li, Chongyang & Wanyan, Hong & Xu, Ying & Zhang, Wei, 2022. "The lending risk predicting of the folk informal financial organization from big data using the deep learning hybrid model," Finance Research Letters, Elsevier, vol. 50(C).
- Bildirici, Melike E. & Sonustun, Bahri, 2021. "Chaotic behavior in gold, silver, copper and bitcoin prices," Resources Policy, Elsevier, vol. 74(C).
- Du, Pei & Guo, Ju’e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2021. "Multi-step metal prices forecasting based on a data preprocessing method and an optimized extreme learning machine by marine predators algorithm," Resources Policy, Elsevier, vol. 74(C).
- Arnaut, Javier L., 2022. "The importance of uranium prices and structural shocks: Some implications for Greenland," Energy Policy, Elsevier, vol. 161(C).
- Matyjaszek, Marta & Riesgo Fernández, Pedro & Krzemień, Alicja & Wodarski, Krzysztof & Fidalgo Valverde, Gregorio, 2019. "Forecasting coking coal prices by means of ARIMA models and neural networks, considering the transgenic time series theory," Resources Policy, Elsevier, vol. 61(C), pages 283-292.
- Hernandez, Jose Arreola & Shahzad, Syed Jawad Hussain & Sadorsky, Perry & Uddin, Gazi Salah & Bouri, Elie & Kang, Sang Hoon, 2022. "Regime specific spillovers across US sectors and the role of oil price volatility," Energy Economics, Elsevier, vol. 107(C).
- Marañon, Matias & Kumral, Mustafa, 2019. "Kondratiev long cycles in metal commodity prices," Resources Policy, Elsevier, vol. 61(C), pages 21-28.
- Sun, Li & Wang, Yang, 2021. "Global economic performance and natural resources commodity prices volatility: Evidence from pre and post COVID-19 era," Resources Policy, Elsevier, vol. 74(C).
- Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
- Wen, Jun & Mughal, Nafeesa & Kashif, Maryam & Jain, Vipin & Ramos Meza, Carlos Samuel & Cong, Phan The, 2022. "Volatility in natural resources prices and economic performance: Evidence from BRICS economies," Resources Policy, Elsevier, vol. 75(C).
- Zhang, Hong & Nguyen, Hoang & Vu, Diep-Anh & Bui, Xuan-Nam & Pradhan, Biswajeet, 2021. "Forecasting monthly copper price: A comparative study of various machine learning-based methods," Resources Policy, Elsevier, vol. 73(C).
- Yang, Haolin & Schell, Kristen R., 2022. "GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting," Energy, Elsevier, vol. 238(PC).
- Khoshalan, Hasel Amini & Shakeri, Jamshid & Najmoddini, Iraj & Asadizadeh, Mostafa, 2021. "Forecasting copper price by application of robust artificial intelligence techniques," Resources Policy, Elsevier, vol. 73(C).
- Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
- Rubaszek, Michał, 2021.
"Forecasting crude oil prices with DSGE models,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 531-546.
- Michał Rubaszek, 2019. "Forecasting crude oil prices with DSGE models," GRU Working Paper Series GRU_2019_024, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
- de Souza Ramser, Claudia Aline & Souza, Adriano Mendonça & Souza, Francisca Mendonça & da Veiga, Claudimar Pereira & da Silva, Wesley Vieira, 2019. "The importance of principal components in studying mineral prices using vector autoregressive models: Evidence from the Brazilian economy," Resources Policy, Elsevier, vol. 62(C), pages 9-21.
- Ma, Yu & Zhang, Yang & Ji, Qiang, 2021. "Do oil shocks affect Chinese bank risk?," Energy Economics, Elsevier, vol. 96(C).
- Hammoudeh, Shawkat & Mokni, Khaled & Ben-Salha, Ousama & Ajmi, Ahdi Noomen, 2021. "Distributional predictability between oil prices and renewable energy stocks: Is there a role for the COVID-19 pandemic?," Energy Economics, Elsevier, vol. 103(C).
- Redlinger, Michael & Eggert, Roderick, 2016. "Volatility of by-product metal and mineral prices," Resources Policy, Elsevier, vol. 47(C), pages 69-77.
- Wei Li & Denis Mike Becker, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Papers 2101.05249, arXiv.org, revised Jul 2021.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhao, Xiaochun & Jiang, Mei & Wu, Zijun & Zhou, Ying, 2023. "Quantitative evaluation of China's energy security policy under the background of intensifying geopolitical conflicts: Based on PMC model," Resources Policy, Elsevier, vol. 85(PA).
- Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
- Pan, Wenchao & Guo, Zhichen & Zhang, Jiayan Shi Yaxuan & Luo, Lingle, 2024. "Forecasting of coal and electricity prices in China: Evidence from the quantum bee colony-support vector regression neural network," Energy Economics, Elsevier, vol. 134(C).
- Esangbedo, Moses Olabhele & Taiwo, Blessing Olamide & Abbas, Hawraa H. & Hosseini, Shahab & Sazid, Mohammed & Fissha, Yewuhalashet, 2024. "Enhancing the exploitation of natural resources for green energy: An application of LSTM-based meta-model for aluminum prices forecasting," Resources Policy, Elsevier, vol. 92(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Jianguo & Xu, Zhongtian, 2023. "A novel three-stage hybrid learning paradigm based on a multi-decomposition strategy, optimized relevance vector machine, and error correction for multi-step forecasting of precious metal prices," Resources Policy, Elsevier, vol. 80(C).
- Nabavi, Zohre & Mirzehi, Mohammad & Dehghani, Hesam, 2024. "Reliable novel hybrid extreme gradient boosting for forecasting copper prices using meta-heuristic algorithms: A thirty-year analysis," Resources Policy, Elsevier, vol. 90(C).
- Luo, Hongyuan & Wang, Deyun & Cheng, Jinhua & Wu, Qiaosheng, 2022. "Multi-step-ahead copper price forecasting using a two-phase architecture based on an improved LSTM with novel input strategy and error correction," Resources Policy, Elsevier, vol. 79(C).
- Li, Ning & Li, Jiaojiao & Wang, Qizhou & Yan, Dairong & Wang, Liguan & Jia, Mingtao, 2024. "A novel copper price forecasting ensemble method using adversarial interpretive structural model and sparrow search algorithm," Resources Policy, Elsevier, vol. 91(C).
- He, Zhichao & Huang, Jianhua, 2023. "A novel non-ferrous metal price hybrid forecasting model based on data preprocessing and error correction," Resources Policy, Elsevier, vol. 86(PB).
- Li, Ranran, 2023. "Forecasting energy spot prices: A multiscale clustering recognition approach," Resources Policy, Elsevier, vol. 81(C).
- Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
- Ozdemir, Ali Can & Buluş, Kurtuluş & Zor, Kasım, 2022. "Medium- to long-term nickel price forecasting using LSTM and GRU networks," Resources Policy, Elsevier, vol. 78(C).
- Jiang, He & Hu, Weiqiang & Xiao, Ling & Dong, Yao, 2022. "A decomposition ensemble based deep learning approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 78(C).
- Du, He & Zhang, Chunguang, 2024. "Economic policy uncertainty and natural resources commodity prices: A comparative analysis of pre- and post-pandemic quantile trends in China," Resources Policy, Elsevier, vol. 88(C).
- Zheng, Shuxian & Tan, Zhanglu & Xing, Wanli & Zhou, Xuanru & Zhao, Pei & Yin, Xiuqi & Hu, Han, 2022. "A comparative exploration of the chaotic characteristics of Chinese and international copper futures prices," Resources Policy, Elsevier, vol. 78(C).
- Haokun Su & Xiangang Peng & Hanyu Liu & Huan Quan & Kaitong Wu & Zhiwen Chen, 2022. "Multi-Step-Ahead Electricity Price Forecasting Based on Temporal Graph Convolutional Network," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
- Meng, Anbo & Zhu, Jianbin & Yan, Baiping & Yin, Hao, 2024. "Day-ahead electricity price prediction in multi-price zones based on multi-view fusion spatio-temporal graph neural network," Applied Energy, Elsevier, vol. 369(C).
- Cheng, WeiJin & Ming, Kai & Ullah, Mirzat, 2024. "Oil price volatility prediction using out-of-sample analysis – Prediction efficiency of individual models, combination methods, and machine learning based shrinkage methods," Energy, Elsevier, vol. 300(C).
- Huang, Yu-ting & Bai, Yu-long & Yu, Qing-he & Ding, Lin & Ma, Yong-jie, 2022. "Application of a hybrid model based on the Prophet model, ICEEMDAN and multi-model optimization error correction in metal price prediction," Resources Policy, Elsevier, vol. 79(C).
- Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
- Zhou, Yang & Wang, Xiaoxiao & Dong, Rebecca Kechen & Pu, Ruihui & Yue, Xiao-Guang, 2022. "Natural resources commodity prices volatility: Evidence from COVID-19 for the US economy," Resources Policy, Elsevier, vol. 78(C).
- Guan, Keqin & Gong, Xu, 2023. "A new hybrid deep learning model for monthly oil prices forecasting," Energy Economics, Elsevier, vol. 128(C).
- Sun, Yanpeng & Chang, Hsuling & Vasbieva, Dinara G. & Andlib, Zubaria, 2022. "Economic performance, investment in energy resources, foreign trade, and natural resources volatility nexus: Evidence from China's provincial data," Resources Policy, Elsevier, vol. 78(C).
- Cheng Zhang & Nilam Nur Amir Sjarif & Roslina Ibrahim, 2023. "Deep learning models for price forecasting of financial time series: A review of recent advancements: 2020-2022," Papers 2305.04811, arXiv.org, revised Sep 2023.
More about this item
Keywords
Metal mineral; Spot settlement prices; LSTM; GWO; Machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:81:y:2023:i:c:s0301420723000685. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.