IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.04880.html
   My bibliography  Save this paper

Bridging an energy system model with an ensemble deep-learning approach for electricity price forecasting

Author

Listed:
  • Souhir Ben Amor
  • Thomas Mobius
  • Felix Musgens

Abstract

This paper combines a techno-economic energy system model with an econometric model to maximise electricity price forecasting accuracy. The proposed combination model is tested on the German day-ahead wholesale electricity market. Our paper also benchmarks the results against several econometric alternatives. Lastly, we demonstrate the economic value of improved price estimators maximising the revenue from an electric storage resource. The results demonstrate that our integrated model improves overall forecasting accuracy by 18 %, compared to available literature benchmarks. Furthermore, our robustness checks reveal that a) the Ensemble Deep Neural Network model performs best in our dataset and b) adding output from the techno-economic energy systems model as econometric model input improves the performance of all econometric models. The empirical relevance of the forecast improvement is confirmed by the results of the exemplary storage optimisation, in which the integration of the techno-economic energy system model leads to a revenue increase of up to 10 %.

Suggested Citation

  • Souhir Ben Amor & Thomas Mobius & Felix Musgens, 2024. "Bridging an energy system model with an ensemble deep-learning approach for electricity price forecasting," Papers 2411.04880, arXiv.org.
  • Handle: RePEc:arx:papers:2411.04880
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.04880
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.04880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.