IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6514-d653678.html
   My bibliography  Save this article

Short-Term Electricity Price Forecasting Based on BP Neural Network Optimized by SAPSO

Author

Listed:
  • Min Yi

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Wei Xie

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Li Mo

    (School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

In the electricity market environment, the market clearing price has strong volatility, periodicity and randomness, which makes it more difficult to select the input features of artificial neural network forecasting. Although the traditional back propagation (BP) neural network has been applied early in electricity price forecasting, it has the problem of low forecasting accuracy. For this reason, this paper uses the maximum information coefficient and Pearson correlation analysis to determine the main factors affecting electricity price fluctuation as the input factors of the forecasting model. The improved particle swarm optimization algorithm, called simulated annealing particle swarm optimization (SAPSO), is used to optimize the BP neural network to establish the SAPSO-BP short-term electricity price forecasting model and the actual sample data are used to simulate and calculate. The results show that the SAPSO-BP price forecasting model has a high degree of fit and the average relative error and mean square error of the forecasting model are lower than those of the BP network model and PSO-BP model, as well as better than the PSO-BP model in terms of convergence speed and accuracy, which provides an effective method for improving the accuracy of short-term electricity price forecasting.

Suggested Citation

  • Min Yi & Wei Xie & Li Mo, 2021. "Short-Term Electricity Price Forecasting Based on BP Neural Network Optimized by SAPSO," Energies, MDPI, vol. 14(20), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6514-:d:653678
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6514/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6514/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weizhen Wang & Jiaojiao Feng & Feinan Xu, 2021. "Estimating Downward Shortwave Solar Radiation on Clear-Sky Days in Heterogeneous Surface Using LM-BP Neural Network," Energies, MDPI, vol. 14(2), pages 1-14, January.
    2. Wei Han & Lingbo Nan & Min Su & Yu Chen & Rennian Li & Xuejing Zhang, 2019. "Research on the Prediction Method of Centrifugal Pump Performance Based on a Double Hidden Layer BP Neural Network," Energies, MDPI, vol. 12(14), pages 1-14, July.
    3. Akylas Stratigakos & Athanasios Bachoumis & Vasiliki Vita & Elias Zafiropoulos, 2021. "Short-Term Net Load Forecasting with Singular Spectrum Analysis and LSTM Neural Networks," Energies, MDPI, vol. 14(14), pages 1-13, July.
    4. Tiezhou Wu & Xiao Shi & Li Liao & Chuanjian Zhou & Hang Zhou & Yuehong Su, 2019. "A Capacity Configuration Control Strategy to Alleviate Power Fluctuation of Hybrid Energy Storage System Based on Improved Particle Swarm Optimization," Energies, MDPI, vol. 12(4), pages 1-11, February.
    5. Arooj Tariq Kiani & Muhammad Faisal Nadeem & Ali Ahmed & Irfan A. Khan & Hend I. Alkhammash & Intisar Ali Sajjad & Babar Hussain, 2021. "An Improved Particle Swarm Optimization with Chaotic Inertia Weight and Acceleration Coefficients for Optimal Extraction of PV Models Parameters," Energies, MDPI, vol. 14(11), pages 1-24, May.
    6. Danny Espín-Sarzosa & Rodrigo Palma-Behnke & Felipe Valencia, 2021. "Modeling of Small Productive Processes for the Operation of a Microgrid," Energies, MDPI, vol. 14(14), pages 1-19, July.
    7. Paweł Pawlik & Konrad Kania & Bartosz Przysucha, 2021. "The Use of Deep Learning Methods in Diagnosing Rotating Machines Operating in Variable Conditions," Energies, MDPI, vol. 14(14), pages 1-17, July.
    8. Lanjun Wan & Hongyang Li & Yiwei Chen & Changyun Li, 2020. "Rolling Bearing Fault Prediction Method Based on QPSO-BP Neural Network and Dempster–Shafer Evidence Theory," Energies, MDPI, vol. 13(5), pages 1-23, March.
    9. Adán Alberto Jumilla-Corral & Carlos Perez-Tello & Héctor Enrique Campbell-Ramírez & Zulma Yadira Medrano-Hurtado & Pedro Mayorga-Ortiz & Roberto L. Avitia, 2021. "Modeling of Harmonic Current in Electrical Grids with Photovoltaic Power Integration Using a Nonlinear Autoregressive with External Input Neural Networks," Energies, MDPI, vol. 14(13), pages 1-19, July.
    10. Yiyuan Chen & Yufeng Wang & Jianhua Ma & Qun Jin, 2019. "BRIM: An Accurate Electricity Spot Price Prediction Scheme-Based Bidirectional Recurrent Neural Network and Integrated Market," Energies, MDPI, vol. 12(12), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dounia El Bourakadi & Hiba Ramadan & Ali Yahyaouy & Jaouad Boumhidi, 2023. "A robust energy management approach in two-steps ahead using deep learning BiLSTM prediction model and type-2 fuzzy decision-making controller," Fuzzy Optimization and Decision Making, Springer, vol. 22(4), pages 645-667, December.
    2. Fang Guo & Shangyun Deng & Weijia Zheng & An Wen & Jinfeng Du & Guangshan Huang & Ruiyang Wang, 2022. "Short-Term Electricity Price Forecasting Based on the Two-Layer VMD Decomposition Technique and SSA-LSTM," Energies, MDPI, vol. 15(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiongchao Lin & Wenshuai Xi & Jinze Dai & Caihong Wang & Yonggang Wang, 2020. "Prediction of Slag Characteristics Based on Artificial Neural Network for Molten Gasification of Hazardous Wastes," Energies, MDPI, vol. 13(19), pages 1-18, October.
    2. Jia Li & Xin Wang & Yue Wang & Wancheng Wang & Baibing Chen & Xiaolong Chen, 2020. "Effects of a Combination Impeller on the Flow Field and External Performance of an Aero-Fuel Centrifugal Pump," Energies, MDPI, vol. 13(4), pages 1-16, February.
    3. Sergey Obukhov & Ahmed Ibrahim & Mohamed A. Tolba & Ali M. El-Rifaie, 2019. "Power Balance Management of an Autonomous Hybrid Energy System Based on the Dual-Energy Storage," Energies, MDPI, vol. 12(24), pages 1-15, December.
    4. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Wagner Fontes Godoy & Daniel Morinigo-Sotelo & Oscar Duque-Perez & Ivan Nunes da Silva & Alessandro Goedtel & Rodrigo Henrique Cunha Palácios, 2020. "Estimation of Bearing Fault Severity in Line-Connected and Inverter-Fed Three-Phase Induction Motors," Energies, MDPI, vol. 13(13), pages 1-17, July.
    6. Grzegorz Filo, 2023. "Artificial Intelligence Methods in Hydraulic System Design," Energies, MDPI, vol. 16(8), pages 1-19, April.
    7. Zhengwei Huang & Jin Huang & Jintao Min, 2022. "SSA-LSTM: Short-Term Photovoltaic Power Prediction Based on Feature Matching," Energies, MDPI, vol. 15(20), pages 1-16, October.
    8. Wang, Lining & Mao, Mingxuan & Xie, Jili & Liao, Zheng & Zhang, Hao & Li, Huanxin, 2023. "Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model," Energy, Elsevier, vol. 262(PB).
    9. Si, Yupeng & Wang, Rongjie & Zhang, Shiqi & Zhou, Wenting & Lin, Anhui & Zeng, Guangmiao, 2022. "Configuration optimization and energy management of hybrid energy system for marine using quantum computing," Energy, Elsevier, vol. 253(C).
    10. Der-Fa Chen & Yi-Cheng Shih & Shih-Cheng Li & Chin-Tung Chen & Jung-Chu Ting, 2020. "Permanent-Magnet SLM Drive System Using AMRRSPNNB Control System with DGWO," Energies, MDPI, vol. 13(11), pages 1-25, June.
    11. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    12. Krishna Prakash N. & Jai Govind Singh, 2023. "Electricity price forecasting using hybrid deep learned networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1750-1771, November.
    13. Kılıç Depren, Serpil & Kartal, Mustafa Tevfik & Ertuğrul, Hasan Murat & Depren, Özer, 2022. "The role of data frequency and method selection in electricity price estimation: Comparative evidence from Turkey in pre-pandemic and pandemic periods," Renewable Energy, Elsevier, vol. 186(C), pages 217-225.
    14. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2024. "Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting," Applied Energy, Elsevier, vol. 353(PA).
    15. Zaiyu Gu & Guojiang Xiong & Xiaofan Fu, 2023. "Parameter Extraction of Solar Photovoltaic Cell and Module Models with Metaheuristic Algorithms: A Review," Sustainability, MDPI, vol. 15(4), pages 1-45, February.
    16. Huican Luo & Peijian Zhou & Lingfeng Shu & Jiegang Mou & Haisheng Zheng & Chenglong Jiang & Yantian Wang, 2022. "Energy Performance Curves Prediction of Centrifugal Pumps Based on Constrained PSO-SVR Model," Energies, MDPI, vol. 15(9), pages 1-19, May.
    17. Di Zhu & Yinghong Wang & Fenglin Zhang, 2022. "Energy Price Prediction Integrated with Singular Spectrum Analysis and Long Short-Term Memory Network against the Background of Carbon Neutrality," Energies, MDPI, vol. 15(21), pages 1-20, October.
    18. Zhang, Yiming & Li, Jingxiang & Fei, Liangyu & Feng, Zhiyan & Gao, Jingzhou & Yan, Wenpeng & Zhao, Shengdun, 2023. "Operational performance estimation of vehicle electric coolant pump based on the ISSA-BP neural network," Energy, Elsevier, vol. 268(C).
    19. Ciaran O'Connor & Joseph Collins & Steven Prestwich & Andrea Visentin, 2024. "Electricity Price Forecasting in the Irish Balancing Market," Papers 2402.06714, arXiv.org.
    20. Shah Fahad & Shiyou Yang & Rehan Ali Khan & Shafiullah Khan & Shoaib Ahmed Khan, 2021. "A Multimodal Smart Quantum Particle Swarm Optimization for Electromagnetic Design Optimization Problems," Energies, MDPI, vol. 14(15), pages 1-11, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6514-:d:653678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.