IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v22y2023i1d10.1007_s10700-022-09385-0.html
   My bibliography  Save this article

Parameter estimation for uncertain fractional differential equations

Author

Listed:
  • Liu He

    (Nanjing University of Science and Technology)

  • Yuanguo Zhu

    (Nanjing University of Science and Technology)

  • Ziqiang Lu

    (Nanjing Audit University)

Abstract

Since the concept of uncertain fractional differential equations was proposed, its wide range of applications have urged us to consider parameter estimation for uncertain fractional differential equations. In this paper, based on the definition of Liu process, we construct a function of unknown parameters which follows a standard normal uncertainty distribution. Then the method of moments is used to build a system of equations whose solutions are the estimated values of unknown parameters. After that, an algorithm of parameter estimation for a special uncertain fractional differential equation is proposed. Finally, the algorithm is applied to two numerical examples and the acceptability of the estimated parameters is proved by using uncertain hypothesis test.

Suggested Citation

  • Liu He & Yuanguo Zhu & Ziqiang Lu, 2023. "Parameter estimation for uncertain fractional differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 103-122, March.
  • Handle: RePEc:spr:fuzodm:v:22:y:2023:i:1:d:10.1007_s10700-022-09385-0
    DOI: 10.1007/s10700-022-09385-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-022-09385-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-022-09385-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lifen Jia & Wei Chen, 2021. "Uncertain SEIAR model for COVID-19 cases in China," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 243-259, June.
    2. Guanzhong Ma & Xiangfeng Yang & Xiao Yao, 2021. "A relation between moments of Liu process and Bernoulli numbers," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 261-272, June.
    3. Xiaowei Chen & Jing Li & Chen Xiao & Peilin Yang, 2021. "Numerical solution and parameter estimation for uncertain SIR model with application to COVID-19," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 189-208, June.
    4. Waichon Lio & Baoding Liu, 2021. "Initial value estimation of uncertain differential equations and zero-day of COVID-19 spread in China," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 177-188, June.
    5. Kai Yao & Baoding Liu, 2020. "Parameter estimation in uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 1-12, March.
    6. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    7. Lu, Ziqiang & Zhu, Yuanguo & Li, Bo, 2019. "Critical value-based Asian option pricing model for uncertain financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 694-703.
    8. Jin, Ting & Zhu, Yuanguo, 2020. "First hitting time about solution for an uncertain fractional differential equation and application to an uncertain risk index model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    9. Ziqiang Lu & Hongyan Yan & Yuanguo Zhu, 2019. "European option pricing model based on uncertain fractional differential equation," Fuzzy Optimization and Decision Making, Springer, vol. 18(2), pages 199-217, June.
    10. Jin, Ting & Sun, Yun & Zhu, Yuanguo, 2020. "Time integral about solution of an uncertain fractional order differential equation and application to zero-coupon bond model," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    11. Yang, Xiangfeng & Liu, Yuhan & Park, Gyei-Kark, 2020. "Parameter estimation of uncertain differential equation with application to financial market," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Liu & Zhu, Yuanguo, 2024. "Nonparametric estimation for uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Jin, Ting & Yang, Xiangfeng, 2021. "Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 203-221.
    3. Chen, Dan & Liu, Yang, 2023. "Uncertain Gordon-Schaefer model driven by Liu process," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    4. Yang Liu & Baoding Liu, 2022. "Residual analysis and parameter estimation of uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 21(4), pages 513-530, December.
    5. Farshid Mehrdoust & Idin Noorani & Wei Xu, 2023. "Uncertain energy model for electricity and gas futures with application in spark-spread option price," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 123-148, March.
    6. Tang, Han & Yang, Xiangfeng, 2021. "Uncertain chemical reaction equation," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    7. Weiwei Wang & Dan A. Ralescu, 2021. "Option pricing formulas based on uncertain fractional differential equation," Fuzzy Optimization and Decision Making, Springer, vol. 20(4), pages 471-495, December.
    8. Jin, Ting & Ding, Hui & Xia, Hongxuan & Bao, Jinfeng, 2021. "Reliability index and Asian barrier option pricing formulas of the uncertain fractional first-hitting time model with Caputo type," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    9. Liu He & Yuanguo Zhu & Yajing Gu, 2023. "Nonparametric estimation for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(4), pages 697-715, December.
    10. Jie, Ke-Wei & Liu, San-Yang & Sun, Xiao-Jun & Xu, Yun-Cheng, 2023. "A dynamic ripple-spreading algorithm for solving mean–variance of shortest path model in uncertain random networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    11. Caiwen Gao & Zhiqiang Zhang & Baoliang Liu, 2022. "Uncertain Population Model with Jumps," Mathematics, MDPI, vol. 10(13), pages 1-12, June.
    12. Zhang, Guidong & Sheng, Yuhong, 2022. "Estimating time-varying parameters in uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    13. Tingqing Ye & Baoding Liu, 2023. "Uncertain hypothesis test for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 195-211, June.
    14. Tang, Han & Yang, Xiangfeng, 2022. "Moment estimation in uncertain differential equations based on the Milstein scheme," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    15. Noorani, Idin & Mehrdoust, Farshid, 2022. "Parameter estimation of uncertain differential equation by implementing an optimized artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    16. Gao, Yin & Gao, Jinwu & Yang, Xiangfeng, 2022. "Parameter estimation in uncertain delay differential equations via the method of moments," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    17. Jia, Lifen & Chen, Wei, 2020. "Knock-in options of an uncertain stock model with floating interest rate," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    18. Sheng, Yuhong & Yao, Kai & Qin, Zhongfeng, 2020. "Continuity and variation analysis of fractional uncertain processes," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    19. Jian Zhou & Yujiao Jiang & Athanasios A. Pantelous & Weiwen Dai, 2023. "A systematic review of uncertainty theory with the use of scientometrical method," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 463-518, September.
    20. Tingqing Ye & Baoding Liu, 2022. "Uncertain hypothesis test with application to uncertain regression analysis," Fuzzy Optimization and Decision Making, Springer, vol. 21(2), pages 157-174, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:22:y:2023:i:1:d:10.1007_s10700-022-09385-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.