IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v178y2024ics0960077923012444.html
   My bibliography  Save this article

Nonparametric estimation for uncertain fractional differential equations

Author

Listed:
  • He, Liu
  • Zhu, Yuanguo

Abstract

After uncertainty theory was established, it has become a new branch of mathematics and been applied to describing the indeterministic phenomena as an uncertain dynamic system. As an important part of uncertainty theory, uncertain fractional differential equation is a good tool to model some complex dynamic systems with uncertainties. Due to the lack of corresponding information, models of parametric uncertain fractional differential equation are not always available. Therefore, the requirement for nonparametric estimation of uncertain fractional differential equation is urgent. Utilizing the thought of Legendre polynomial approximation, we propose a method to estimate the nonparametric uncertain fractional differential equations. Then, the error analysis of this method is given. After that, the numerical simulation is applied to illustrating the validity of error analysis and show the errors between the approximating functions and actual functions. The stability of this method has also been verified without highly dense observations. Finally, by means of uncertain hypothesis test and Kolmogorov–Smirnov test, we prove the superiority of uncertain fractional differential equations for some examples.

Suggested Citation

  • He, Liu & Zhu, Yuanguo, 2024. "Nonparametric estimation for uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012444
    DOI: 10.1016/j.chaos.2023.114342
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923012444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114342?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lifen Jia & Wei Chen, 2021. "Uncertain SEIAR model for COVID-19 cases in China," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 243-259, June.
    2. Jin, Ting & Zhu, Yuanguo, 2020. "First hitting time about solution for an uncertain fractional differential equation and application to an uncertain risk index model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    3. Tingqing Ye & Baoding Liu, 2023. "Uncertain hypothesis test for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 195-211, June.
    4. Yang Liu & Baoding Liu, 2022. "Residual analysis and parameter estimation of uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 21(4), pages 513-530, December.
    5. Tingqing Ye & Baoding Liu, 2022. "Uncertain hypothesis test with application to uncertain regression analysis," Fuzzy Optimization and Decision Making, Springer, vol. 21(2), pages 157-174, June.
    6. Guanzhong Ma & Xiangfeng Yang & Xiao Yao, 2021. "A relation between moments of Liu process and Bernoulli numbers," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 261-272, June.
    7. Agrawal, Khushbu & Kumar, Ranbir & Kumar, Sunil & Hadid, Samir & Momani, Shaher, 2022. "Bernoulli wavelet method for non-linear fractional Glucose–Insulin regulatory dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    8. Xiaowei Chen & Jing Li & Chen Xiao & Peilin Yang, 2021. "Numerical solution and parameter estimation for uncertain SIR model with application to COVID-19," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 189-208, June.
    9. Waichon Lio & Baoding Liu, 2021. "Initial value estimation of uncertain differential equations and zero-day of COVID-19 spread in China," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 177-188, June.
    10. Liu, Z., 2021. "Generalized moment estimation for uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    11. Liu, Zhe & Yang, Ying, 2022. "Moment estimation for parameters in high-order uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    12. Jin, Ting & Sun, Yun & Zhu, Yuanguo, 2020. "Time integral about solution of an uncertain fractional order differential equation and application to zero-coupon bond model," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    13. Yang, Xiangfeng & Liu, Yuhan & Park, Gyei-Kark, 2020. "Parameter estimation of uncertain differential equation with application to financial market," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    14. Kai Yao & Baoding Liu, 2020. "Parameter estimation in uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 1-12, March.
    15. Lu, Ziqiang & Zhu, Yuanguo & Li, Bo, 2019. "Critical value-based Asian option pricing model for uncertain financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 694-703.
    16. Altan, Aytaç & Karasu, Seçkin & Bekiros, Stelios, 2019. "Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 325-336.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Jinsheng & Lio, Waichon & Kang, Rui, 2024. "Analysis of simple pendulum with uncertain differential equation," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu He & Yuanguo Zhu & Ziqiang Lu, 2023. "Parameter estimation for uncertain fractional differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 103-122, March.
    2. Liu, Hanjie & Zhu, Yuanguo, 2024. "Carbon option pricing based on uncertain fractional differential equation: A binomial tree approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 13-28.
    3. Liu He & Yuanguo Zhu & Yajing Gu, 2023. "Nonparametric estimation for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(4), pages 697-715, December.
    4. Farshid Mehrdoust & Idin Noorani & Wei Xu, 2023. "Uncertain energy model for electricity and gas futures with application in spark-spread option price," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 123-148, March.
    5. Chen, Dan & Liu, Yang, 2023. "Uncertain Gordon-Schaefer model driven by Liu process," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    6. Yang Liu & Baoding Liu, 2022. "Residual analysis and parameter estimation of uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 21(4), pages 513-530, December.
    7. Tingqing Ye & Baoding Liu, 2023. "Uncertain hypothesis test for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 195-211, June.
    8. Noorani, Idin & Mehrdoust, Farshid, 2022. "Parameter estimation of uncertain differential equation by implementing an optimized artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    9. Xie, Jinsheng & Lio, Waichon & Kang, Rui, 2024. "Analysis of simple pendulum with uncertain differential equation," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    10. Tang, Han & Yang, Xiangfeng, 2021. "Uncertain chemical reaction equation," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    11. Jin, Ting & Yang, Xiangfeng, 2021. "Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 203-221.
    12. Zhang, Guidong & Sheng, Yuhong, 2022. "Estimating time-varying parameters in uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    13. Tang, Han & Yang, Xiangfeng, 2022. "Moment estimation in uncertain differential equations based on the Milstein scheme," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    14. Tingqing Ye & Baoding Liu, 2022. "Uncertain hypothesis test with application to uncertain regression analysis," Fuzzy Optimization and Decision Making, Springer, vol. 21(2), pages 157-174, June.
    15. Xiangfeng Yang & Hua Ke, 2023. "Uncertain interest rate model for Shanghai interbank offered rate and pricing of American swaption," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 447-462, September.
    16. Shen, Jiayu & Shi, Jianxin & Gao, Lingceng & Zhang, Qiang & Zhu, Kai, 2023. "Uncertain green product supply chain with government intervention," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 136-156.
    17. Meiling Jin & Fengming Liu & Yufu Ning & Yichang Gao & Dongmei Li, 2024. "A Mathematical Optimization Model Designed to Determine the Optimal Timing of Online Rumor Intervention Based on Uncertainty Theory," Mathematics, MDPI, vol. 12(16), pages 1-21, August.
    18. Liu, Z. & Yang, Y., 2021. "Selection of uncertain differential equations using cross validation," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    19. Waichon Lio & Rui Kang, 2023. "Bayesian rule in the framework of uncertainty theory," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 337-358, September.
    20. Yang Liu & Zhongfeng Qin & Xiang Li, 2024. "Are the queueing systems in practice random or uncertain? Evidence from online car-hailing data in Beijing," Fuzzy Optimization and Decision Making, Springer, vol. 23(4), pages 497-511, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.