IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v165y2022ip1s0960077922009481.html
   My bibliography  Save this article

Parameter estimation of uncertain differential equation by implementing an optimized artificial neural network

Author

Listed:
  • Noorani, Idin
  • Mehrdoust, Farshid

Abstract

This study suggests a novel method for estimation of uncertain stock model parameters driven by Liu process. The proposed method decomposes the parameter estimation problem into two sub-problems: the first sub-problem implements an optimized artificial neural network based on the observed data, and the next sub-problem estimates the uncertain model parameters according to the optimized artificial neural network. We apply Nelder–Mead algorithm to optimize the artificial neural network and parameter estimation problem. The main supremacy of the presented method is that the estimation problem is independent of time intervals among observations and can be used to model future data. Providing a comparative method shows that the proposed approach can be effective for non-linear problems in which the artificial neural network structures perform well.

Suggested Citation

  • Noorani, Idin & Mehrdoust, Farshid, 2022. "Parameter estimation of uncertain differential equation by implementing an optimized artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
  • Handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009481
    DOI: 10.1016/j.chaos.2022.112769
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922009481
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang Liu & Baoding Liu, 2022. "Residual analysis and parameter estimation of uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 21(4), pages 513-530, December.
    2. Waichon Lio & Baoding Liu, 2021. "Initial value estimation of uncertain differential equations and zero-day of COVID-19 spread in China," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 177-188, June.
    3. Liu, Z., 2021. "Generalized moment estimation for uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    4. Yang, Xiangfeng & Liu, Yuhan & Park, Gyei-Kark, 2020. "Parameter estimation of uncertain differential equation with application to financial market," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Kai Yao & Baoding Liu, 2020. "Parameter estimation in uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 1-12, March.
    6. Tang, Han & Yang, Xiangfeng, 2021. "Uncertain chemical reaction equation," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farshid Mehrdoust & Idin Noorani & Wei Xu, 2023. "Uncertain energy model for electricity and gas futures with application in spark-spread option price," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 123-148, March.
    2. Tingqing Ye & Baoding Liu, 2023. "Uncertain hypothesis test for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 195-211, June.
    3. Yang Liu & Baoding Liu, 2022. "Residual analysis and parameter estimation of uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 21(4), pages 513-530, December.
    4. He, Liu & Zhu, Yuanguo, 2024. "Nonparametric estimation for uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    5. Chen, Dan & Liu, Yang, 2023. "Uncertain Gordon-Schaefer model driven by Liu process," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    6. Zhang, Guidong & Sheng, Yuhong, 2022. "Estimating time-varying parameters in uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    7. Tang, Han & Yang, Xiangfeng, 2022. "Moment estimation in uncertain differential equations based on the Milstein scheme," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    8. Tingqing Ye & Baoding Liu, 2022. "Uncertain hypothesis test with application to uncertain regression analysis," Fuzzy Optimization and Decision Making, Springer, vol. 21(2), pages 157-174, June.
    9. Liu He & Yuanguo Zhu & Yajing Gu, 2023. "Nonparametric estimation for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(4), pages 697-715, December.
    10. Waichon Lio & Rui Kang, 2023. "Bayesian rule in the framework of uncertainty theory," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 337-358, September.
    11. Wang, Weiwei & Ralescu, Dan A., 2021. "Valuation of lookback option under uncertain volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    12. Lu, Jing & Yang, Xiangfeng & Tian, Miao, 2022. "Barrier swaption pricing formulae of mean-reverting model in uncertain environment," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    13. Xiangfeng Yang & Hua Ke, 2023. "Uncertain interest rate model for Shanghai interbank offered rate and pricing of American swaption," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 447-462, September.
    14. Tang, Han & Yang, Xiangfeng, 2021. "Uncertain chemical reaction equation," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    15. Liu, Z. & Yang, Y., 2021. "Selection of uncertain differential equations using cross validation," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    16. Liu, Z. & Yang, Y., 2021. "Uncertain pharmacokinetic model based on uncertain differential equation," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    17. Liu He & Yuanguo Zhu & Ziqiang Lu, 2023. "Parameter estimation for uncertain fractional differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 103-122, March.
    18. Liu, Zhe & Yang, Ying, 2022. "Moment estimation for parameters in high-order uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    19. Najafi, Alireza & Taleghani, Rahman, 2022. "Fractional Liu uncertain differential equation and its application to finance," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    20. Pan, Zeyu & Gao, Yin & Yuan, Lin, 2021. "Bermudan options pricing formulas in uncertain financial markets," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p1:s0960077922009481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.