IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v411y2021ics0096300321005683.html
   My bibliography  Save this article

Uncertain chemical reaction equation

Author

Listed:
  • Tang, Han
  • Yang, Xiangfeng

Abstract

Reaction rate is a particularly important research object in chemical kinetics, and it is a measure of how fast a chemical reaction goes. In order to illustrate and clarify the evolution of concentration of a substance involved in the reaction, this paper derives an uncertain chemical reaction equation based on the theory of uncertain differential equation. By using the actual observations, one can estimate the parameters presented in the uncertain chemical reaction equation. As an application, the half-life of reaction is investigated. Finally, a paradox for stochastic chemical kinetics is given.

Suggested Citation

  • Tang, Han & Yang, Xiangfeng, 2021. "Uncertain chemical reaction equation," Applied Mathematics and Computation, Elsevier, vol. 411(C).
  • Handle: RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321005683
    DOI: 10.1016/j.amc.2021.126479
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321005683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lifen Jia & Wei Chen, 2021. "Uncertain SEIAR model for COVID-19 cases in China," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 243-259, June.
    2. Anderson, Brian D.O., 1982. "Reverse-time diffusion equation models," Stochastic Processes and their Applications, Elsevier, vol. 12(3), pages 313-326, May.
    3. Xiaowei Chen & Jing Li & Chen Xiao & Peilin Yang, 2021. "Numerical solution and parameter estimation for uncertain SIR model with application to COVID-19," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 189-208, June.
    4. Waichon Lio & Baoding Liu, 2021. "Initial value estimation of uncertain differential equations and zero-day of COVID-19 spread in China," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 177-188, June.
    5. Wang, Xiao & Ning, Yufu & Moughal, Tauqir A. & Chen, Xiumei, 2015. "Adams–Simpson method for solving uncertain differential equation," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 209-219.
    6. Yang, Xiangfeng & Liu, Yuhan & Park, Gyei-Kark, 2020. "Parameter estimation of uncertain differential equation with application to financial market," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    7. Xiangfeng Yang & Kai Yao, 2017. "Uncertain partial differential equation with application to heat conduction," Fuzzy Optimization and Decision Making, Springer, vol. 16(3), pages 379-403, September.
    8. Kai Yao & Baoding Liu, 2020. "Parameter estimation in uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 1-12, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Dan & Liu, Yang, 2023. "Uncertain Gordon-Schaefer model driven by Liu process," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    2. Tang, Han & Yang, Xiangfeng, 2022. "Moment estimation in uncertain differential equations based on the Milstein scheme," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    3. Yang Liu & Baoding Liu, 2022. "Residual analysis and parameter estimation of uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 21(4), pages 513-530, December.
    4. Tingqing Ye & Baoding Liu, 2023. "Uncertain hypothesis test for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 195-211, June.
    5. Noorani, Idin & Mehrdoust, Farshid, 2022. "Parameter estimation of uncertain differential equation by implementing an optimized artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    6. Farshid Mehrdoust & Idin Noorani & Wei Xu, 2023. "Uncertain energy model for electricity and gas futures with application in spark-spread option price," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 123-148, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Dan & Liu, Yang, 2023. "Uncertain Gordon-Schaefer model driven by Liu process," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    2. Yang Liu & Baoding Liu, 2022. "Residual analysis and parameter estimation of uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 21(4), pages 513-530, December.
    3. Liu He & Yuanguo Zhu & Ziqiang Lu, 2023. "Parameter estimation for uncertain fractional differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 103-122, March.
    4. Farshid Mehrdoust & Idin Noorani & Wei Xu, 2023. "Uncertain energy model for electricity and gas futures with application in spark-spread option price," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 123-148, March.
    5. He, Liu & Zhu, Yuanguo, 2024. "Nonparametric estimation for uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    6. Zhang, Guidong & Sheng, Yuhong, 2022. "Estimating time-varying parameters in uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    7. Jian Zhou & Yujiao Jiang & Athanasios A. Pantelous & Weiwen Dai, 2023. "A systematic review of uncertainty theory with the use of scientometrical method," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 463-518, September.
    8. Liu He & Yuanguo Zhu & Yajing Gu, 2023. "Nonparametric estimation for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(4), pages 697-715, December.
    9. Jia, Lifen & Liu, Xueyong, 2021. "Optimal harvesting strategy based on uncertain logistic population model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    10. Liu, Z. & Yang, Y., 2021. "Selection of uncertain differential equations using cross validation," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    11. Tingqing Ye & Baoding Liu, 2023. "Uncertain hypothesis test for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 195-211, June.
    12. Tang, Han & Yang, Xiangfeng, 2022. "Moment estimation in uncertain differential equations based on the Milstein scheme," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    13. Noorani, Idin & Mehrdoust, Farshid, 2022. "Parameter estimation of uncertain differential equation by implementing an optimized artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    14. Lu Yang & Tingqing Ye & Haizhong Yang, 2022. "Uncertain seepage equation in fissured porous media," Fuzzy Optimization and Decision Making, Springer, vol. 21(3), pages 383-403, September.
    15. Jia, Lifen & Chen, Wei, 2020. "Knock-in options of an uncertain stock model with floating interest rate," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    16. Liu, Z. & Yang, Y., 2021. "Uncertain pharmacokinetic model based on uncertain differential equation," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    17. Tingqing Ye & Baoding Liu, 2022. "Uncertain hypothesis test with application to uncertain regression analysis," Fuzzy Optimization and Decision Making, Springer, vol. 21(2), pages 157-174, June.
    18. Xiangfeng Yang & Hua Ke, 2023. "Uncertain interest rate model for Shanghai interbank offered rate and pricing of American swaption," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 447-462, September.
    19. Shen, Jiayu & Shi, Jianxin & Gao, Lingceng & Zhang, Qiang & Zhu, Kai, 2023. "Uncertain green product supply chain with government intervention," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 136-156.
    20. Najafi, Alireza & Taleghani, Rahman, 2022. "Fractional Liu uncertain differential equation and its application to finance," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321005683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.