IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v450y2023ics0096300323001807.html
   My bibliography  Save this article

Uncertain Gordon-Schaefer model driven by Liu process

Author

Listed:
  • Chen, Dan
  • Liu, Yang

Abstract

The purpose of this paper is to employ an uncertain differential equation to model the fish population. Assume that the dynamic noises are described by Liu process. This paper obtains an uncertain Gordon-Schaefer equation. Then the existence, uniqueness, inverse uncertainty distribution, and stability of the solution of the uncertain Gordon-Schaefer equation are discussed. Next, three applications of the solution are given. Furthermore, the moment estimation is applied to inferring the unknown parameters of the uncertain Gordon-Schaefer model, and a brief study of the halibut population is proposed. Finally, a paradox of the stochastic Gordon-Schaefer model is deduced.

Suggested Citation

  • Chen, Dan & Liu, Yang, 2023. "Uncertain Gordon-Schaefer model driven by Liu process," Applied Mathematics and Computation, Elsevier, vol. 450(C).
  • Handle: RePEc:eee:apmaco:v:450:y:2023:i:c:s0096300323001807
    DOI: 10.1016/j.amc.2023.128011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323001807
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Xiangfeng & Ralescu, Dan A., 2015. "Adams method for solving uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 993-1003.
    2. Lifen Jia & Wei Chen, 2021. "Uncertain SEIAR model for COVID-19 cases in China," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 243-259, June.
    3. Yang Liu & Baoding Liu, 2022. "Residual analysis and parameter estimation of uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 21(4), pages 513-530, December.
    4. Xiaowei Chen & Jing Li & Chen Xiao & Peilin Yang, 2021. "Numerical solution and parameter estimation for uncertain SIR model with application to COVID-19," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 189-208, June.
    5. Waichon Lio & Baoding Liu, 2021. "Initial value estimation of uncertain differential equations and zero-day of COVID-19 spread in China," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 177-188, June.
    6. H. Scott Gordon, 1954. "The Economic Theory of a Common-Property Resource: The Fishery," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 9, pages 178-203, Palgrave Macmillan.
    7. Kai Yao & Baoding Liu, 2020. "Parameter estimation in uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 1-12, March.
    8. Liu, Z. & Yang, Y., 2021. "Uncertain pharmacokinetic model based on uncertain differential equation," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    9. Yang, Xiangfeng & Liu, Yuhan & Park, Gyei-Kark, 2020. "Parameter estimation of uncertain differential equation with application to financial market," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Mohring, Herbert & Schroeter, John, 1991. "The Costs of Inefficient Fishery Regulation: A Partial Study of Pacific Halibut," ISU General Staff Papers 199106010700001228, Iowa State University, Department of Economics.
    11. H. Scott Gordon, 1954. "The Economic Theory of a Common-Property Resource: The Fishery," Journal of Political Economy, University of Chicago Press, vol. 62(2), pages 124-124.
    12. Liu, Z. & Yang, Y., 2021. "Pharmacokinetic model based on multifactor uncertain differential equation," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    13. Tang, Han & Yang, Xiangfeng, 2021. "Uncertain chemical reaction equation," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Liu & Zhongfeng Qin & Xiang Li, 2024. "Are the queueing systems in practice random or uncertain? Evidence from online car-hailing data in Beijing," Fuzzy Optimization and Decision Making, Springer, vol. 23(4), pages 497-511, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tingqing Ye & Baoding Liu, 2023. "Uncertain hypothesis test for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 195-211, June.
    2. Yang Liu & Baoding Liu, 2022. "Residual analysis and parameter estimation of uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 21(4), pages 513-530, December.
    3. Farshid Mehrdoust & Idin Noorani & Wei Xu, 2023. "Uncertain energy model for electricity and gas futures with application in spark-spread option price," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 123-148, March.
    4. He, Liu & Zhu, Yuanguo, 2024. "Nonparametric estimation for uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    5. Liu, Z. & Yang, Y., 2021. "Selection of uncertain differential equations using cross validation," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    6. Noorani, Idin & Mehrdoust, Farshid, 2022. "Parameter estimation of uncertain differential equation by implementing an optimized artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    7. Liu He & Yuanguo Zhu & Ziqiang Lu, 2023. "Parameter estimation for uncertain fractional differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 103-122, March.
    8. Liu He & Yuanguo Zhu & Yajing Gu, 2023. "Nonparametric estimation for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(4), pages 697-715, December.
    9. Jia, Lifen & Liu, Xueyong, 2021. "Optimal harvesting strategy based on uncertain logistic population model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    10. Tang, Han & Yang, Xiangfeng, 2021. "Uncertain chemical reaction equation," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    11. Shen, Jiayu & Shi, Jianxin & Gao, Lingceng & Zhang, Qiang & Zhu, Kai, 2023. "Uncertain green product supply chain with government intervention," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 136-156.
    12. Xie, Jinsheng & Lio, Waichon & Kang, Rui, 2024. "Analysis of simple pendulum with uncertain differential equation," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    13. Caiwen Gao & Zhiqiang Zhang & Baoliang Liu, 2022. "Uncertain Population Model with Jumps," Mathematics, MDPI, vol. 10(13), pages 1-12, June.
    14. Zhang, Guidong & Sheng, Yuhong, 2022. "Estimating time-varying parameters in uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    15. Chen, Xin & Zhu, Yuanguo & Sheng, Linxue, 2021. "Optimal control for uncertain stochastic dynamic systems with jump and application to an advertising model," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    16. Tang, Han & Yang, Xiangfeng, 2022. "Moment estimation in uncertain differential equations based on the Milstein scheme," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    17. Waichon Lio & Baoding Liu, 2021. "Initial value estimation of uncertain differential equations and zero-day of COVID-19 spread in China," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 177-188, June.
    18. Jia, Lifen & Chen, Wei, 2020. "Knock-in options of an uncertain stock model with floating interest rate," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    19. Liu, Z. & Yang, Y., 2021. "Uncertain pharmacokinetic model based on uncertain differential equation," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    20. Jian Zhou & Yujiao Jiang & Athanasios A. Pantelous & Weiwen Dai, 2023. "A systematic review of uncertainty theory with the use of scientometrical method," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 463-518, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:450:y:2023:i:c:s0096300323001807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.