IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v19y2020i1d10.1007_s10700-019-09310-y.html
   My bibliography  Save this article

Parameter estimation in uncertain differential equations

Author

Listed:
  • Kai Yao

    (University of Chinese Academy of Sciences)

  • Baoding Liu

    (Tsinghua University)

Abstract

Parameter estimation is a critical problem in the wide applications of uncertain differential equations. The method of moments is employed for the first time as an approach for estimating the parameters in uncertain differential equations. Based on the difference form of an uncertain differential equation, a function of the parameters is proved to follow a standard normal uncertainty distribution. Setting the empirical moments of the functions of the parameters and the observed data equal to the moments of the standard normal uncertainty distribution, a system of equations about the parameters is obtained whose solutions are the estimates of the parameters. Analytic examples and numerical examples are given to illustrate the proposed method of moments.

Suggested Citation

  • Kai Yao & Baoding Liu, 2020. "Parameter estimation in uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 1-12, March.
  • Handle: RePEc:spr:fuzodm:v:19:y:2020:i:1:d:10.1007_s10700-019-09310-y
    DOI: 10.1007/s10700-019-09310-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-019-09310-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-019-09310-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    2. Yang, Xiangfeng & Ralescu, Dan A., 2015. "Adams method for solving uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 993-1003.
    3. Wang, Xiao & Ning, Yufu & Moughal, Tauqir A. & Chen, Xiumei, 2015. "Adams–Simpson method for solving uncertain differential equation," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 209-219.
    4. Gao, Rong, 2016. "Milne method for solving uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 774-785.
    5. Zhang, Yi & Gao, Jinwu & Huang, Zhiyong, 2017. "Hamming method for solving uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 331-341.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xiangfeng & Liu, Yuhan & Park, Gyei-Kark, 2020. "Parameter estimation of uncertain differential equation with application to financial market," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Jia, Lifen & Lio, Waichon & Yang, Xiangfeng, 2018. "Numerical method for solving uncertain spring vibration equation," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 428-441.
    3. Jia, Lifen & Chen, Wei, 2020. "Knock-in options of an uncertain stock model with floating interest rate," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Jian Zhou & Yujiao Jiang & Athanasios A. Pantelous & Weiwen Dai, 2023. "A systematic review of uncertainty theory with the use of scientometrical method," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 463-518, September.
    5. Yang, Xiangfeng & Ralescu, Dan A., 2021. "A Dufort–Frankel scheme for one-dimensional uncertain heat equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 98-112.
    6. Zhang, Yi & Gao, Jinwu & Huang, Zhiyong, 2017. "Hamming method for solving uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 331-341.
    7. Lu, Ziqiang & Zhu, Yuanguo, 2019. "Numerical approach for solution to an uncertain fractional differential equation," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 137-148.
    8. Liu, Z., 2021. "Generalized moment estimation for uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    9. Yang, Xiangfeng, 2018. "Solving uncertain heat equation via numerical method," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 92-104.
    10. Lifen Jia & Wei Chen, 2021. "Uncertain SEIAR model for COVID-19 cases in China," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 243-259, June.
    11. Lu, Ziqiang & Zhu, Yuanguo, 2023. "Asymptotic stability in pth moment of uncertain dynamical systems with time-delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 323-335.
    12. Wang, Xiao & Ning, Yufu & Peng, Zhen, 2020. "Some results about uncertain differential equations with time-dependent delay," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    13. Liu, Z. & Yang, Y., 2021. "Uncertain pharmacokinetic model based on uncertain differential equation," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    14. Yang Liu & Baoding Liu, 2022. "Residual analysis and parameter estimation of uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 21(4), pages 513-530, December.
    15. Liu, Zhe & Yang, Ying, 2022. "Moment estimation for parameters in high-order uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    16. Yiyao Sun & Taoyong Su, 2017. "Mean-reverting stock model with floating interest rate in uncertain environment," Fuzzy Optimization and Decision Making, Springer, vol. 16(2), pages 235-255, June.
    17. Weiwei Wang & Dan A. Ralescu, 2021. "Option pricing formulas based on uncertain fractional differential equation," Fuzzy Optimization and Decision Making, Springer, vol. 20(4), pages 471-495, December.
    18. Robert R. Bliss & Ehud I. Ronn, 1997. "Callable U.S. Treasury bonds: optimal calls, anomalies, and implied volatilities," FRB Atlanta Working Paper 97-1, Federal Reserve Bank of Atlanta.
    19. Sergio Zúñiga, 1999. "Modelos de Tasas de Interés en Chile: Una Revisión," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 36(108), pages 875-893.
    20. Anna Cieslak & Pavol Povala, 2016. "Information in the Term Structure of Yield Curve Volatility," Journal of Finance, American Finance Association, vol. 71(3), pages 1393-1436, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:19:y:2020:i:1:d:10.1007_s10700-019-09310-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.