IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v27y2023i3d10.1007_s00780-023-00505-1.html
   My bibliography  Save this article

A general approach for Parisian stopping times under Markov processes

Author

Listed:
  • Gongqiu Zhang

    (The Chinese University of Hong Kong, Shenzhen)

  • Lingfei Li

    (The Chinese University of Hong Kong)

Abstract

We propose a method based on continuous-time Markov chain (CTMC) approximation to compute the distribution of Parisian stopping times and to price options of Parisian style under general one-dimensional Markov processes. We prove the convergence of the method under a general setting and obtain sharp estimates of the convergence rate for diffusion models. Our theoretical analysis reveals how to design the grid of the CTMC to achieve faster convergence. Numerical experiments are conducted to demonstrate the accuracy and efficiency of our method for both diffusion and jump models. To show the versatility of our approach, we develop extensions for multi-sided Parisian stopping times, the joint distribution of Parisian stopping times and first passage times, Parisian bonds, regime-switching models and stochastic volatility models.

Suggested Citation

  • Gongqiu Zhang & Lingfei Li, 2023. "A general approach for Parisian stopping times under Markov processes," Finance and Stochastics, Springer, vol. 27(3), pages 769-829, July.
  • Handle: RePEc:spr:finsto:v:27:y:2023:i:3:d:10.1007_s00780-023-00505-1
    DOI: 10.1007/s00780-023-00505-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-023-00505-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-023-00505-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansjörg Albrecher & Dominik Kortschak & Xiaowen Zhou, 2012. "Pricing of Parisian Options for a Jump-Diffusion Model with Two-Sided Jumps," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(2), pages 97-129, July.
    2. Gongqiu Zhang & Lingfei Li, 2019. "Analysis of Markov Chain Approximation for Option Pricing and Hedging: Grid Design and Convergence Behavior," Operations Research, INFORMS, vol. 67(2), pages 407-427, March.
    3. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    4. Marc Chesney & Laurent Gauthier, 2006. "American Parisian options," Finance and Stochastics, Springer, vol. 10(4), pages 475-506, December.
    5. Marc Chesney & Nikola Vasiljević, 2018. "Parisian options with jumps: a maturity–excursion randomization approach," Quantitative Finance, Taylor & Francis Journals, vol. 18(11), pages 1887-1908, November.
    6. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    7. Liming Feng & Vadim Linetsky, 2008. "Pricing Options in Jump-Diffusion Models: An Extrapolation Approach," Operations Research, INFORMS, vol. 56(2), pages 304-325, April.
    8. Dassios, Angelos & Lim, Jia Wei, 2013. "Parisian option pricing: a recursive solution for the density of the Parisian stopping time," LSE Research Online Documents on Economics 58985, London School of Economics and Political Science, LSE Library.
    9. Zhang, Xiang & Li, Lingfei & Zhang, Gongqiu, 2021. "Pricing American drawdown options under Markov models," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1188-1205.
    10. Lingfei Li & Gongqiu Zhang, 2018. "Error analysis of finite difference and Markov chain approximations for option pricing," Mathematical Finance, Wiley Blackwell, vol. 28(3), pages 877-919, July.
    11. Cui, Zhenyu & Lee, Chihoon & Liu, Yanchu, 2018. "Single-transform formulas for pricing Asian options in a general approximation framework under Markov processes," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1134-1139.
    12. Zhu, Song-Ping & Chen, Wen-Ting, 2013. "Pricing Parisian and Parasian options analytically," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 875-896.
    13. Angelos Dassios & You You Zhang, 2016. "The joint distribution of Parisian and hitting times of Brownian motion with application to Parisian option pricing," Finance and Stochastics, Springer, vol. 20(3), pages 773-804, July.
    14. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    15. Angelos Dassios & Shanle Wu, 2010. "Perturbed Brownian motion and its application to Parisian option pricing," Finance and Stochastics, Springer, vol. 14(3), pages 473-494, September.
    16. Ning Cai & Yingda Song & Steven Kou, 2015. "A General Framework for Pricing Asian Options Under Markov Processes," Operations Research, INFORMS, vol. 63(3), pages 540-554, June.
    17. Angelos Dassios & Jia Wei Lim, 2017. "An Analytical Solution For The Two-Sided Parisian Stopping Time, Its Asymptotics, And The Pricing Of Parisian Options," Mathematical Finance, Wiley Blackwell, vol. 27(2), pages 604-620, April.
    18. Yingda Song & Ning Cai & Steven Kou, 2018. "Computable Error Bounds of Laplace Inversion for Pricing Asian Options," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 634-645, January.
    19. Ronnie Loeffen & Irmina Czarna & Zbigniew Palmowski, 2011. "Parisian ruin probability for spectrally negative L\'{e}vy processes," Papers 1102.4055, arXiv.org, revised Mar 2013.
    20. Dassios, Angelos & Wu, Shanle, 2008. "Parisian ruin with exponential claims," LSE Research Online Documents on Economics 32033, London School of Economics and Political Science, LSE Library.
    21. Gongqiu Zhang & Lingfei Li, 2021. "A General Approach for Lookback Option Pricing under Markov Models," Papers 2112.00439, arXiv.org.
    22. Céline Labart & Jérôme Lelong, 2009. "Pricing Double Barrier Parisian Options Using Laplace Transforms," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 19-44.
    23. Marco Avellaneda & Lixin Wu, 1999. "Pricing Parisian-Style Options With A Lattice Method," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-16.
    24. Dassios, Angelos & Lim, Jia Wei, 2017. "An analytical solution for the two-sided Parisian stopping time, its asymptotics and the pricing of Parisian options," LSE Research Online Documents on Economics 60154, London School of Economics and Political Science, LSE Library.
    25. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2017. "A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps," European Journal of Operational Research, Elsevier, vol. 262(1), pages 381-400.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gongqiu Zhang & Lingfei Li, 2021. "A General Approach for Parisian Stopping Times under Markov Processes," Papers 2107.06605, arXiv.org.
    2. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    3. Zhang, Xiang & Li, Lingfei & Zhang, Gongqiu, 2021. "Pricing American drawdown options under Markov models," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1188-1205.
    4. Meier, Christian & Li, Lingfei & Zhang, Gongqiu, 2023. "Simulation of multidimensional diffusions with sticky boundaries via Markov chain approximation," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1292-1308.
    5. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    6. Kirkby, J. Lars, 2023. "Hybrid equity swap, cap, and floor pricing under stochastic interest by Markov chain approximation," European Journal of Operational Research, Elsevier, vol. 305(2), pages 961-978.
    7. Gongqiu Zhang & Lingfei Li, 2021. "A General Approach for Lookback Option Pricing under Markov Models," Papers 2112.00439, arXiv.org.
    8. Yangyang Zhuang & Pan Tang, 2023. "Pricing of American Parisian option as executive option based on the least‐squares Monte Carlo approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1469-1496, October.
    9. Ding, Kailin & Ning, Ning, 2021. "Markov chain approximation and measure change for time-inhomogeneous stochastic processes," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    10. Christian Meier & Lingfei Li & Gongqiu Zhang, 2021. "Simulation of Multidimensional Diffusions with Sticky Boundaries via Markov Chain Approximation," Papers 2107.04260, arXiv.org.
    11. Kirkby, J. Lars & Nguyen, Dang H. & Nguyen, Duy, 2020. "A general continuous time Markov chain approximation for multi-asset option pricing with systems of correlated diffusions," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    12. Christian Meier & Lingfei Li & Gongqiu Zhang, 2019. "Markov Chain Approximation of One-Dimensional Sticky Diffusions," Papers 1910.14282, arXiv.org.
    13. Kirkby, J.L. & Nguyen, Dang H. & Nguyen, Duy & Nguyen, Nhu N., 2022. "Maximum likelihood estimation of diffusions by continuous time Markov chain," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    14. Wensheng Yang & Jingtang Ma & Zhenyu Cui, 2021. "Analysis of Markov chain approximation for Asian options and occupation-time derivatives: Greeks and convergence rates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 359-412, April.
    15. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    16. Gongqiu Zhang & Lingfei Li, 2019. "Analysis of Markov Chain Approximation for Option Pricing and Hedging: Grid Design and Convergence Behavior," Operations Research, INFORMS, vol. 67(2), pages 407-427, March.
    17. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, September.
    18. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "A data-driven framework for consistent financial valuation and risk measurement," European Journal of Operational Research, Elsevier, vol. 289(1), pages 381-398.
    19. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    20. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.

    More about this item

    Keywords

    Parisian stopping time; Parisian options; Parisian ruin probability; Markov chain approximation; Grid design;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:27:y:2023:i:3:d:10.1007_s00780-023-00505-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.