IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v12y2009i01ns0219024909005154.html
   My bibliography  Save this article

Pricing Double Barrier Parisian Options Using Laplace Transforms

Author

Listed:
  • CÉLINE LABART

    (INRIA Paris-Rocquencourt, MathFi Project, Domaine de Voluceau, Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France)

  • JÉRÔME LELONG

    (INRIA Paris-Rocquencourt, MathFi Project, Domaine de Voluceau, Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France)

Abstract

In this article, we study a double barrier version of the standard Parisian options. We give closed formulas for the Laplace transforms of their prices with respect to the maturity time. We explain how to invert them numerically and prove a result on the accuracy of the numerical inversion when the function to be recovered is sufficiently smooth. Henceforth, we study the regularity of the Parisian option prices with respect to maturity time and prove that except for particular values of the barriers, the prices are of class $\mathcal{C}^\infty$ (see Theorem 5.1). This study heavily relies on the existence of a density for the Parisian times, so we have deeply investigated the existence and the regularity of the density for the Parisian times (see Theorem 5.3).

Suggested Citation

  • Céline Labart & Jérôme Lelong, 2009. "Pricing Double Barrier Parisian Options Using Laplace Transforms," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 19-44.
  • Handle: RePEc:wsi:ijtafx:v:12:y:2009:i:01:n:s0219024909005154
    DOI: 10.1142/S0219024909005154
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024909005154
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024909005154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Haber & P. Schonbucher & P.Wilmott, 1999. "An American in Paris," OFRC Working Papers Series 1999mf14, Oxford Financial Research Centre.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dassios, Angelos & Lim, Jia Wei, 2013. "Parisian option pricing: a recursive solution for the density of the Parisian stopping time," LSE Research Online Documents on Economics 58985, London School of Economics and Political Science, LSE Library.
    2. Angelos Dassios & Junyi Zhang, 2020. "Parisian Time of Reflected Brownian Motion with Drift on Rays and Its Application in Banking," Risks, MDPI, vol. 8(4), pages 1-14, December.
    3. Gongqiu Zhang & Lingfei Li, 2023. "A general approach for Parisian stopping times under Markov processes," Finance and Stochastics, Springer, vol. 27(3), pages 769-829, July.
    4. Zhu, Song-Ping & Chen, Wen-Ting, 2013. "Pricing Parisian and Parasian options analytically," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 875-896.
    5. Angelos Dassios & Shanle Wu, 2010. "Perturbed Brownian motion and its application to Parisian option pricing," Finance and Stochastics, Springer, vol. 14(3), pages 473-494, September.
    6. Yangyang Zhuang & Pan Tang, 2023. "Pricing of American Parisian option as executive option based on the least‐squares Monte Carlo approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1469-1496, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:12:y:2009:i:01:n:s0219024909005154. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.