Perturbed Brownian motion and its application to Parisian option pricing
Author
Abstract
Suggested Citation
DOI: 10.1007/s00780-009-0113-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Céline Labart & Jérôme Lelong, 2009. "Pricing Parisian options using Laplace transforms," Post-Print hal-00776703, HAL.
- Céline Labart & Jérôme Lelong, 2009. "Pricing Double Barrier Parisian Options Using Laplace Transforms," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 19-44.
- J. Anderluh & J. Weide, 2009. "Double-sided Parisian option pricing," Finance and Stochastics, Springer, vol. 13(2), pages 205-238, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Angelos Dassios & Luting Li, 2018. "An Economic Bubble Model and Its First Passage Time," Papers 1803.08160, arXiv.org.
- Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, December.
- Irmina Czarna & Zbigniew Palmowski, 2014. "Dividend Problem with Parisian Delay for a Spectrally Negative Lévy Risk Process," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 239-256, April.
- Angelos Dassios & Jia Wei Lim & Yan Qu, 2020. "Azéma martingales for Bessel and CIR processes and the pricing of Parisian zero‐coupon bonds," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1497-1526, October.
- Angelos Dassios & Luting Li, 2018. "Explicit Asymptotics on First Passage Times of Diffusion Processes," Papers 1806.08161, arXiv.org.
- B. A. Surya, 2018. "Parisian excursion below a fixed level from the last record maximum of Levy insurance risk process," Papers 1806.02083, arXiv.org.
- Anna Ananova & Rama Cont & Renyuan Xu, 2020. "Model-free Analysis of Dynamic Trading Strategies," Papers 2011.02870, arXiv.org, revised Aug 2023.
- Angelos Dassios & Junyi Zhang, 2022. "First Hitting Time of Brownian Motion on Simple Graph with Skew Semiaxes," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1805-1831, September.
- Pingjin Deng & Xiufang Li, 2017. "Barrier Options Pricing With Joint Distribution Of Gaussian Process And Its Maximum," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(06), pages 1-18, September.
- Dassios, Angelos & Li, Luting, 2020. "Explicit asymptotic on first passage times of diffusion processes," LSE Research Online Documents on Economics 103087, London School of Economics and Political Science, LSE Library.
- Guglielmo D'Amico & Filippo Petroni, 2020. "A micro-to-macro approach to returns, volumes and waiting times," Papers 2007.06262, arXiv.org.
- Dassios, Angelos & Lim, Jia Wei & Qu, Yan, 2020. "Azéma martingales for Bessel and CIR processes and the pricing of Parisian zero-coupon bonds," LSE Research Online Documents on Economics 101765, London School of Economics and Political Science, LSE Library.
- Gongqiu Zhang & Lingfei Li, 2021. "A General Approach for Parisian Stopping Times under Markov Processes," Papers 2107.06605, arXiv.org.
- Angelos Dassios & Jia Wei Lim, 2018. "An Efficient Algorithm for Simulating the Drawdown Stopping Time and the Running Maximum of a Brownian Motion," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 189-204, March.
- Sirovich, Roberta & Testa, Luisa, 2019. "On the first positive and negative excursion exceeding a given length," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 137-145.
- Angelos Dassios & Junyi Zhang, 2020. "Parisian Time of Reflected Brownian Motion with Drift on Rays and Its Application in Banking," Risks, MDPI, vol. 8(4), pages 1-14, December.
- Le, Nhat-Tan & Dang, Duy-Minh, 2017. "Pricing American-style Parisian down-and-out call options," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 330-347.
- Gongqiu Zhang & Lingfei Li, 2023. "A general approach for Parisian stopping times under Markov processes," Finance and Stochastics, Springer, vol. 27(3), pages 769-829, July.
- Yangyang Zhuang & Pan Tang, 2023. "Pricing of American Parisian option as executive option based on the least‐squares Monte Carlo approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1469-1496, October.
- Czarna, Irmina & Palmowski, Zbigniew, 2017. "Parisian quasi-stationary distributions for asymmetric Lévy processes," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 75-84.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dassios, Angelos & Lim, Jia Wei, 2013. "Parisian option pricing: a recursive solution for the density of the Parisian stopping time," LSE Research Online Documents on Economics 58985, London School of Economics and Political Science, LSE Library.
- Angelos Dassios & Junyi Zhang, 2020. "Parisian Time of Reflected Brownian Motion with Drift on Rays and Its Application in Banking," Risks, MDPI, vol. 8(4), pages 1-14, December.
- Yangyang Zhuang & Pan Tang, 2023. "Pricing of American Parisian option as executive option based on the least‐squares Monte Carlo approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1469-1496, October.
- Zhu, Song-Ping & Chen, Wen-Ting, 2013. "Pricing Parisian and Parasian options analytically," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 875-896.
- Angelos Dassios & You You Zhang, 2016. "The joint distribution of Parisian and hitting times of Brownian motion with application to Parisian option pricing," Finance and Stochastics, Springer, vol. 20(3), pages 773-804, July.
- Dassios, Angelos & Zhang, You You, 2016. "The joint distribution of Parisian and hitting times of the Brownian motion with application to Parisian option pricing," LSE Research Online Documents on Economics 64959, London School of Economics and Political Science, LSE Library.
- Dassios, Angelos & Zhang, Junyi, 2020. "Parisian time of reflected Brownian motion with drift on rays and its application in banking," LSE Research Online Documents on Economics 107495, London School of Economics and Political Science, LSE Library.
- Gongqiu Zhang & Lingfei Li, 2023. "A general approach for Parisian stopping times under Markov processes," Finance and Stochastics, Springer, vol. 27(3), pages 769-829, July.
- Dassios, Angelos & Lim, Jia Wei, 2017. "An analytical solution for the two-sided Parisian stopping time, its asymptotics and the pricing of Parisian options," LSE Research Online Documents on Economics 60154, London School of Economics and Political Science, LSE Library.
More about this item
Keywords
Excursion time; Two-state semi-Markov model; Path-dependent options; Parisian options; Laplace transform; 91B28; 60J65; 60K15; 60J27; G13;All these keywords.
JEL classification:
- G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:14:y:2010:i:3:p:473-494. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.