IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i4d10.1007_s10668-020-00865-0.html
   My bibliography  Save this article

Water–food–energy–climate nexus and technology productivity: a Nigerian case study of organic leafy vegetable production

Author

Listed:
  • Jelili Adegboyega Adebiyi

    (Michigan State University)

  • Laura Schmitt Olabisi

    (Michigan State University)

  • Lin Liu

    (Michigan State University)

  • Dee Jordan

    (Michigan State University)

Abstract

Low agricultural productivity is a major challenge constraining food production in developing countries. Attempts at addressing the problem have resulted in the development and deployment of agricultural technologies, such as organic farming, to help boost productivity, enhance farmers’ income, and their overall livelihood conditions. The deployment of such productivity-enhancing technologies has mostly overlooked their inexplicable interconnectedness and interdependencies with nexus factors such as climate, water, and energy within the embeddings of a food production system. Through a Nigerian case study approach, this study attempts to bridge this gap by qualitatively investigating how organic leafy vegetable production (OLVP) and its anticipated outcomes can be affected by the interface of water, energy, and climate with food production. This was intended to generate exploratory insights that will help underscore why cross-sectoral linkages should be accounted for when deploying agricultural technology interventions. To achieve this objective, we conducted in-depth interviews and focus group discussions, and field visits to the farms of organic farmers in Ajibode, Ibadan, Nigeria. Results indicate that the productivity of OLVP was severely constrained by highly contextual nexus factors such as energy deficit, the water source for irrigation, changes in rainfall patterns, and temperature effect of harmattan. We concluded that location-specific nexus elements that intersect with food production should be accounted for when introducing productivity-enhancing technologies. Otherwise, the opportunity for improved agricultural productivity may remain elusive. Finally, our study shows that the nexus approach can help reveal intricately linked cross-sectoral factors that can constrain the performance of agricultural technologies.

Suggested Citation

  • Jelili Adegboyega Adebiyi & Laura Schmitt Olabisi & Lin Liu & Dee Jordan, 2021. "Water–food–energy–climate nexus and technology productivity: a Nigerian case study of organic leafy vegetable production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6128-6147, April.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00865-0
    DOI: 10.1007/s10668-020-00865-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00865-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00865-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Howarth, Candice & Monasterolo, Irene, 2016. "Understanding barriers to decision making in the UK energy-food-water nexus: The added value of interdisciplinary approaches," Environmental Science & Policy, Elsevier, vol. 61(C), pages 53-60.
    2. Olga Laiza Kupika & Edson Gandiwa & Godwell Nhamo, 2019. "Green economy initiatives in the face of climate change: experiences from the Middle Zambezi Biosphere Reserve, Zimbabwe," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2507-2533, October.
    3. Nielsen, Thea & Schunemann, Franziska & McNulty, Emily & Zeller, Manfred & Nkonya, Ephraim M. & Kato, Edward & Meyer, Stefan & Anderson, Weston & Zhu, Tingju & Queface, Antonio & Mapemba, Lawrence, 2015. "The food-energy-water security nexus: Definitions, policies, and methods in an application to Malawi and Mozambique:," IFPRI discussion papers 1480, International Food Policy Research Institute (IFPRI).
    4. Mukherji, Aditi, 2007. "The energy-irrigation nexus and its impact on groundwater markets in eastern Indo-Gangetic basin: Evidence from West Bengal, India," Energy Policy, Elsevier, vol. 35(12), pages 6413-6430, December.
    5. Mukuve, Feriha Mugisha & Fenner, Richard A., 2015. "The influence of water, land, energy and soil-nutrient resource interactions on the food system in Uganda," Food Policy, Elsevier, vol. 51(C), pages 24-37.
    6. Dave D. White & J. Leah Jones & Ross Maciejewski & Rimjhim Aggarwal & Giuseppe Mascaro, 2017. "Stakeholder Analysis for the Food-Energy-Water Nexus in Phoenix, Arizona: Implications for Nexus Governance," Sustainability, MDPI, vol. 9(12), pages 1-21, November.
    7. Yakubu B. Issaka & Moses Antwi & Gladys Tawia, 2016. "A Comparative Analysis of Productivity among Organic and Non-Organic farms in the West Mamprusi District of Ghana," Agriculture, MDPI, vol. 6(2), pages 1-10, March.
    8. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    9. Villholth, Karen, 2006. "Integrating science into groundwater management decisions," Conference Papers h039321, International Water Management Institute.
    10. Sinha, Shirish & Sharma, Bharat R. & Scott, Christopher, 2006. "Understanding and managing the water-energy nexus: Moving beyond the energy debate," Conference Papers h039320, International Water Management Institute.
    11. Mateos, Luciano & dos Santos Almeida, Alexsandro Claudio & Frizzone, José Antônio & Lima, Sílvio Carlos Ribeiro Vieira, 2018. "Performance assessment of smallholder irrigation based on an energy-water-yield nexus approach," Agricultural Water Management, Elsevier, vol. 206(C), pages 176-186.
    12. Julius Kotir, 2011. "Climate change and variability in Sub-Saharan Africa: a review of current and future trends and impacts on agriculture and food security," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(3), pages 587-605, June.
    13. Moser, Christine M. & Barrett, Christopher B., 2003. "The disappointing adoption dynamics of a yield-increasing, low external-input technology: the case of SRI in Madagascar," Agricultural Systems, Elsevier, vol. 76(3), pages 1085-1100, June.
    14. Mpandeli, S. & Naidoo, D. & Mabhaudhi, T. & Nhemachena, Charles & Nhamo, Luxon & Liphadzi, S. & Hlahla, S. & Modi, A. T., "undated". "Climate change adaptation through the water-energy-food nexus in southern Africa," Papers published in Journals (Open Access) H048960, International Water Management Institute.
    15. Simi Goyol & Chaminda Pathirage, 2018. "Farmers Perceptions of Climate Change Related Events in Shendam and Riyom, Nigeria," Economies, MDPI, vol. 6(4), pages 1-26, December.
    16. de Fraiture, Charlotte & Giordano, Meredith, 2014. "Small private irrigation: A thriving but overlooked sector," Agricultural Water Management, Elsevier, vol. 131(C), pages 167-174.
    17. Golam Rasul & Bikash Sharma, 2016. "The nexus approach to water–energy–food security: an option for adaptation to climate change," Climate Policy, Taylor & Francis Journals, vol. 16(6), pages 682-702, August.
    18. Samuel Knapp & Marcel G. A. Heijden, 2018. "A global meta-analysis of yield stability in organic and conservation agriculture," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Swati Singh & Shresth Tayal, 2022. "Managing food at urban level through water–energy–food nexus in India: A way towards holistic sustainable development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3640-3658, March.
    2. Abbas Afshar & Elham Soleimanian & Hossein Akbari Variani & Masoud Vahabzadeh & Amir Molajou, 2022. "The conceptual framework to determine interrelations and interactions for holistic Water, Energy, and Food Nexus," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 10119-10140, August.
    3. Hassan El-Ramady & Eric C. Brevik & Yousry Bayoumi & Tarek A. Shalaby & Mohammed E. El-Mahrouk & Naglaa Taha & Heba Elbasiouny & Fathy Elbehiry & Megahed Amer & Neama Abdalla & József Prokisch & Svein, 2022. "An Overview of Agro-Waste Management in Light of the Water-Energy-Waste Nexus," Sustainability, MDPI, vol. 14(23), pages 1-30, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Leah Jones & Dave D. White, 2021. "A social network analysis of collaborative governance for the food-energy-water nexus in Phoenix, AZ, USA," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 11(4), pages 671-681, December.
    2. Naidoo, Dhesigen & Nhamo, Luxon & Mpandeli, Sylvester & Sobratee, Nafisa & Senzanje, Aidan & Liphadzi, Stanley & Slotow, Rob & Jacobson, Michael & Modi, Albert T. & Mabhaudhi, Tafadzwanashe, 2021. "Operationalising the water-energy-food nexus through the theory of change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    4. Joel O. Botai & Christina M. Botai & Katlego P. Ncongwane & Sylvester Mpandeli & Luxon Nhamo & Muthoni Masinde & Abiodun M. Adeola & Michael G. Mengistu & Henerica Tazvinga & Miriam D. Murambadoro & S, 2021. "A Review of the Water–Energy–Food Nexus Research in Africa," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    5. Andrew Kliskey & Paula Williams & David L. Griffith & Virginia H. Dale & Chelsea Schelly & Anna-Maria Marshall & Valoree S. Gagnon & Weston M. Eaton & Kristin Floress, 2021. "Thinking Big and Thinking Small: A Conceptual Framework for Best Practices in Community and Stakeholder Engagement in Food, Energy, and Water Systems," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    6. Luncheng You & Gerard H. Ros & Yongliang Chen & Qi Shao & Madaline D. Young & Fusuo Zhang & Wim de Vries, 2023. "Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Dardonville, Manon & Legrand, Baptiste & Clivot, Hugues & Bernardin, Claire & Bockstaller, Christian & Therond, Olivier, 2022. "Assessment of ecosystem services and natural capital dynamics in agroecosystems," Ecosystem Services, Elsevier, vol. 54(C).
    8. Radu Petrariu & Marius Constantin & Mihai Dinu & Simona Roxana Pătărlăgeanu & Mădălina Elena Deaconu, 2021. "Water, Energy, Food, Waste Nexus: Between Synergy and Trade-Offs in Romania Based on Entrepreneurship and Economic Performance," Energies, MDPI, vol. 14(16), pages 1-23, August.
    9. Tafadzwanashe Mabhaudhi & Luxon Nhamo & Sylvester Mpandeli & Charles Nhemachena & Aidan Senzanje & Nafisa Sobratee & Pauline Paidamoyo Chivenge & Rob Slotow & Dhesigen Naidoo & Stanley Liphadzi & Albe, 2019. "The Water–Energy–Food Nexus as a Tool to Transform Rural Livelihoods and Well-Being in Southern Africa," IJERPH, MDPI, vol. 16(16), pages 1-20, August.
    10. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    11. Barbieri, Pietro & Starck, Thomas & Voisin, Anne-Sophie & Nesme, Thomas, 2023. "Biological nitrogen fixation of legumes crops under organic farming as driven by cropping management: A review," Agricultural Systems, Elsevier, vol. 205(C).
    12. Jing-Li Fan & Qian Wang & Xian Zhang, 2021. "A bibliometric analysis of the water-energy-food nexus based on the SCIE and SSCI database of the Web of Science," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(2), pages 1-26, February.
    13. Ahmad Hamidov & Katharina Helming, 2020. "Sustainability Considerations in Water–Energy–Food Nexus Research in Irrigated Agriculture," Sustainability, MDPI, vol. 12(15), pages 1-20, August.
    14. Nhamo, Luxon & Matchaya, Greenwell & Mabhaudhi, T. & Nhlengethwa, Sibusiso & Nhemachena, Charles & Mpandeli, S., "undated". "Cereal production trends under climate change: impacts and adaptation strategies in Southern Africa," Papers published in Journals (Open Access) H049086, International Water Management Institute.
    15. Aarnoudse, E. & Closas, Alvar & Lefore, Nicole, 2018. "Water user associations: a review of approaches and alternative management options for Sub-Saharan Africa," IWMI Working Papers H048782, International Water Management Institute.
    16. Luxon Nhamo & Greenwell Matchaya & Tafadzwanashe Mabhaudhi & Sibusiso Nhlengethwa & Charles Nhemachena & Sylvester Mpandeli, 2019. "Cereal Production Trends under Climate Change: Impacts and Adaptation Strategies in Southern Africa," Agriculture, MDPI, vol. 9(2), pages 1-16, February.
    17. Kennedy Muthee & Lalisa Duguma & Judith Nzyoka & Peter Minang, 2021. "Ecosystem-Based Adaptation Practices as a Nature-Based Solution to Promote Water-Energy-Food Nexus Balance," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    18. Adenike K. Opejin & Rimjhim M. Aggarwal & Dave D. White & J. Leah Jones & Ross Maciejewski & Giuseppe Mascaro & Hessam S. Sarjoughian, 2020. "A Bibliometric Analysis of Food-Energy-Water Nexus Literature," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    19. Dave D. White & J. Leah Jones & Ross Maciejewski & Rimjhim Aggarwal & Giuseppe Mascaro, 2017. "Stakeholder Analysis for the Food-Energy-Water Nexus in Phoenix, Arizona: Implications for Nexus Governance," Sustainability, MDPI, vol. 9(12), pages 1-21, November.
    20. Candice Howarth & Katya Brooks, 2017. "Decision-Making and Building Resilience to Nexus Shocks Locally: Exploring Flooding and Heatwaves in the UK," Sustainability, MDPI, vol. 9(5), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00865-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.