IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2018i1p90-d194056.html
   My bibliography  Save this article

Urban Metabolic Analysis of a Food-Water-Energy System for Sustainable Resources Management

Author

Listed:
  • Ming-Che Hu

    (Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan)

  • Chihhao Fan

    (Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan)

  • Tailin Huang

    (Department of Urban Planning, National Cheng Kung University, No. 1, University Road, Tainan City 70101, Taiwan)

  • Chi-Fang Wang

    (Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan)

  • Yu-Hui Chen

    (Department of Agricultural Economics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan)

Abstract

Urban metabolism analyzes the supply and consumption of nutrition, material, energy, and other resources within cities. Food, water, and energy are critical resources for the human society and have complicated cooperative/competitive influences on each other. The management of interactive resources is essential for supply chain analysis. This research analyzes the food-water-energy system of urban metabolism for sustainable resources management. A system dynamics model is established to investigate the urban metabolism of food, water, and energy resources. This study conducts a case study of Shihmen Reservoir system, hydropower generation, paddy rice irrigation of Taoyuan and Shihmen Irrigation Associations, and water consumption in Taoyuan, New Taipei, and Hsinchu cities. The interactive influence of the food-water-energy nexus is quantified in this study; the uncertainty analysis of food, water, and energy nexus is presented.

Suggested Citation

  • Ming-Che Hu & Chihhao Fan & Tailin Huang & Chi-Fang Wang & Yu-Hui Chen, 2018. "Urban Metabolic Analysis of a Food-Water-Energy System for Sustainable Resources Management," IJERPH, MDPI, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:gam:jijerp:v:16:y:2018:i:1:p:90-:d:194056
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/1/90/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/1/90/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Churkina, Galina, 2008. "Modeling the carbon cycle of urban systems," Ecological Modelling, Elsevier, vol. 216(2), pages 107-113.
    2. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    3. Jordan Blekking & Cascade Tuholske & Tom Evans, 2017. "Adaptive Governance and Market Heterogeneity: An Institutional Analysis of an Urban Food System in Sub-Saharan Africa," Sustainability, MDPI, vol. 9(12), pages 1-16, November.
    4. Yang, Xuechun & Wang, Yutao & Sun, Mingxing & Wang, Renqing & Zheng, Peiming, 2018. "Exploring the environmental pressures in urban sectors: An energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 228(C), pages 2298-2307.
    5. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    6. Liang Liu & Cong Feng & Hongwei Zhang & Xuehua Zhang, 2015. "Game Analysis and Simulation of the River Basin Sustainable Development Strategy Integrating Water Emission Trading," Sustainability, MDPI, vol. 7(5), pages 1-21, April.
    7. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    8. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    9. Martinez-Hernandez, Elias & Leach, Matthew & Yang, Aidong, 2017. "Understanding water-energy-food and ecosystem interactions using the nexus simulation tool NexSym," Applied Energy, Elsevier, vol. 206(C), pages 1009-1021.
    10. De Stercke, Simon & Mijic, Ana & Buytaert, Wouter & Chaturvedi, Vaibhav, 2018. "Modelling the dynamic interactions between London’s water and energy systems from an end-use perspective," Applied Energy, Elsevier, vol. 230(C), pages 615-626.
    11. Lee, Chun-Lin & Huang, Shu-Li & Chan, Shih-Liang, 2009. "Synthesis and spatial dynamics of socio-economic metabolism and land use change of Taipei Metropolitan Region," Ecological Modelling, Elsevier, vol. 220(21), pages 2940-2959.
    12. Facchini, Angelo & Kennedy, Chris & Stewart, Iain & Mele, Renata, 2017. "The energy metabolism of megacities," Applied Energy, Elsevier, vol. 186(P2), pages 86-95.
    13. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.
    14. Badescu, Viorel, 2003. "Dynamic model of a complex system including PV cells, electric battery, electrical motor and water pump," Energy, Elsevier, vol. 28(12), pages 1165-1181.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yanlai & Chang, Fi-John & Chang, Li-Chiu & Herricks, Edwin, 2024. "Elevating urban sustainability: An intelligent framework for optimizing water-energy-food nexus synergies in metabolic landscapes," Applied Energy, Elsevier, vol. 360(C).
    2. Wei Zhang & Chang Liu & Lingqi Li & Enhui Jiang & Hongjun Zhao, 2024. "The Coupling Coordination Degree and Its Driving Factors for Water–Energy–Food Resources in the Yellow River Irrigation Area of Shandong Province," Sustainability, MDPI, vol. 16(19), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soprani, Stefano & Marongiu, Fabrizio & Christensen, Ludvig & Alm, Ole & Petersen, Kenni Dinesen & Ulrich, Thomas & Engelbrecht, Kurt, 2019. "Design and testing of a horizontal rock bed for high temperature thermal energy storage," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Jing Zhu & Shenghong Kang & Wenwu Zhao & Qiujie Li & Xinyuan Xie & Xiangping Hu, 2020. "A Bibliometric Analysis of Food–Energy–Water Nexus: Progress and Prospects," Land, MDPI, vol. 9(12), pages 1-22, December.
    3. Xiao, Zhengyan & Yao, Meiqin & Tang, Xiaotong & Sun, Luxi, 2019. "Identifying critical supply chains: An input-output analysis for Food-Energy-Water Nexus in China," Ecological Modelling, Elsevier, vol. 392(C), pages 31-37.
    4. Zhang, Tong & Tan, Qian & Yu, Xiaoning & Zhang, Shan, 2020. "Synergy assessment and optimization for water-energy-food nexus: Modeling and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    6. Mohammad Karamouz & Mohammadreza Zare & Elham Ebrahimi, 2023. "System Dynamics-based Carbon Footprint Assessment of Industrial Water and Energy Use," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2039-2062, March.
    7. Schlör, Holger & Venghaus, Sandra, 2022. "Measuring resilience in the food-energy-water nexus based on ethical values and trade relations," Applied Energy, Elsevier, vol. 323(C).
    8. Ji, Xi, 2015. "Taking the pulse of urban economy: From the perspective of systems ecology," Ecological Modelling, Elsevier, vol. 318(C), pages 36-48.
    9. Lei Jin & Yuanhua Chang & Xianwei Ju & Fei Xu, 2019. "A Study on the Sustainable Development of Water, Energy, and Food in China," IJERPH, MDPI, vol. 16(19), pages 1-16, September.
    10. Zhang, Yan & Wu, Qiong & Fath, Brian D., 2018. "Review of spatial analysis of urban carbon metabolism," Ecological Modelling, Elsevier, vol. 371(C), pages 18-24.
    11. Abbas Afshar & Elham Soleimanian & Hossein Akbari Variani & Masoud Vahabzadeh & Amir Molajou, 2022. "The conceptual framework to determine interrelations and interactions for holistic Water, Energy, and Food Nexus," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 10119-10140, August.
    12. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.
    13. Shasha Xu & Weijun He & Juqin Shen & Dagmawi Mulugeta Degefu & Liang Yuan & Yang Kong, 2019. "Coupling and Coordination Degrees of the Core Water–Energy–Food Nexus in China," IJERPH, MDPI, vol. 16(9), pages 1-18, May.
    14. Chen, Pi-Cheng & Alvarado, Valeria & Hsu, Shu-Chien, 2018. "Water energy nexus in city and hinterlands: Multi-regional physical input-output analysis for Hong Kong and South China," Applied Energy, Elsevier, vol. 225(C), pages 986-997.
    15. Ziv, Guy & Watson, Elizabeth & Young, Dylan & Howard, David C. & Larcom, Shaun T. & Tanentzap, Andrew J., 2018. "The potential impact of Brexit on the energy, water and food nexus in the UK: A fuzzy cognitive mapping approach," Applied Energy, Elsevier, vol. 210(C), pages 487-498.
    16. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    17. Cássia Juliana Fernandes Torres & Camilla Hellen Peixoto de Lima & Bárbara Suzart de Almeida Goodwin & Terencio Rebello de Aguiar Junior & Andrea Sousa Fontes & Daniel Veras Ribeiro & Rodrigo Saldanha, 2019. "A Literature Review to Propose a Systematic Procedure to Develop “Nexus Thinking” Considering the Water–Energy–Food Nexus," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    18. Nana, Tian & Lu, Fadian, 2013. "Adaptive management decision of agroforestry under timber price risk," Journal of Forest Economics, Elsevier, vol. 19(2), pages 162-173.
    19. Baker, J.S. & Wade, C.M. & Sohngen, B.L. & Ohrel, S. & Fawcett, A.A., 2019. "Potential complementarity between forest carbon sequestration incentives and biomass energy expansion," Energy Policy, Elsevier, vol. 126(C), pages 391-401.
    20. Lauri Ahopelto & Noora Veijalainen & Joseph H. A. Guillaume & Marko Keskinen & Mika Marttunen & Olli Varis, 2019. "Can There be Water Scarcity with Abundance of Water? Analyzing Water Stress during a Severe Drought in Finland," Sustainability, MDPI, vol. 11(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2018:i:1:p:90-:d:194056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.